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1 Editorial

This is the first issue of Blackboard, the bulletin of the MTA (I). The genesis
of MTA (I) itself has a curious history. Last year, it was decided by the math-
ematics olympiad cell to centrally administer a pre-regional mathematical
olympiad exam in order to address several problems of non-uniformity. The
competition was held last year with the assistance of the Indian Association
of Physics Teachers (IAPT). The idea of forming a pan-Indian mathematics
teachers association was mooted then with one of the aims being to assist in
conducting the mathematical olympiad exams. However, the purpose of such
an association was envisaged to encompass a much wider canvas and address
all aspects of mathematics teaching in India. Subsequently, the MTA (I) was
formed which includes school teachers as well as college teachers. A natural
fall-out was the decision to bring out a bulletin of the MTA (I).

The Blackboard aims to be inclusive of mathematics teachers from all
over India. Each issue is expected to carry articles related to high school and
undergraduate mathematics. The issues will describe the works of Indian
mathematicians, have articles outlining briefly current mathematical devel-
opments, and also address historical aspects of mathematics. There will be
puzzles and problems for all, including high school level mathematics. All
mathematics teachers (teaching in schools or colleges) will be encouraged to
send in articles based on their classroom experiences and other aspects of
interest to teachers.

The Blackboard will appear as an e-copy every three months. The first
issue is proposed to be released during the inaugural MTA (I) conference dur-
ing January 3-5, 2019. The International Congress of Mathematicians was
held this year in Brazil and the works of Fields medalists and other awardees
are described in this inaugural issue. The endeavour is to keep the style
and level of coverage of most articles suitable and of interest to mathematics
teachers as well as to students. The first issue carries a description of the
research work of each ICM awardee and, this necessitates a somewhat higher
level of exposition. However, there is a lot of material hopefully of interest
to all. In future issues, several articles on the history of Indian mathemat-
ics, proofs of famous theorems proved by Indians are planned among other
things. The World meeting of Women in Mathematics (WM2) is an endeav-
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our which will be described by Geetha Venkataraman in the next issue. This
will give a social perspective as well.

R Ramanujam, who has been involved with mathematics education in the
country for several decades has written about the importance of a problem
solving culture. While seeking ways to make learning of mathematics en-
joyable, a human aspect is to bring in history; the article by Amber Habib
describes such an experiment in the classroom through a discussion of the
sine function. The history of the mathematical olympiad programme in India
is traced in an article by C R Pranesachar. Experts in the respective areas
have described in reasonably simple language the works of all ICM medal-
ists. This will really be of interest to students also. J K Verma has written
a beautiful exposition on the theory of lattice points on polytopes which has
connections with several areas of mathematics. In particular, there is an
exciting Indian contribution related to this topic by a 50-year old work of
Anand, Dumir and Gupta on counting magic squares. Anupam Saikia has re-
viewed a wonderful book by Davenport which has inspired and will doubtless
continue to inspire future students to take up the study of mathematics as a
career. There are puzzles and problems and crosswords which are of diverse
levels; about half of them are accessible to students also. I have picked out
a few problems posed by Ramanujan in Journal of the Indian Mathematical
Society and conducted a brief discussion. The question of what is considered
beautiful in mathematics, although subjective, has several candidates which
are favourites of a large number of people. An article mentions a few of
these and it would be interesting to receive the views of readers for future
issues. The cover design will change from issue to issue. The work of the
Fields medalists did necessitate a rather technical coverage this issue. But,
the editors will strive to make the next issue onwards more balanced. The
inaugural conference will find coverage in the next issue which is expected
to carry a large share of articles accessible to school and college teachers. In
fact, the teachers’ feedback is invited and will be invaluable in bringing out
the issues in a way that would benefit all levels of teachers and students. The
readers are invited to find explanations for the various identities mentioned
on the cover page - two of the problems address these.

... B Sury, Indian Statistical Institute Bangalore.
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2 Message from President, MTA(I)

There is an abundance of evidence, anecdotal as well as statistical, showing
that the mathematical education in the country is in dire need of reform at
a fundamental level. Apart from interventions from the “top”, the situation
calls for a groundswell of awareness and a movement by the broad community
in the country consisting of mathematics teachers and students at various lev-
els, in grasping the issues involved and engaging with them, if the growing
socio-cultural and intellectual needs of the society are to be met satisfacto-
rily. The Mathematics Teachers’ Association, founded in March 2018 (while
its genesis was actually instigated by certain mundane factors recounted by
B. Sury in his Editorial), has been acutely conscious of this broader context
and has the objective of serving to promote a change through interactive
participation of the community.

An inaugural conference bringing together many teachers who could dis-
cuss the underlying issues and brainstorm on remedial actions, and a publi-
cation of a Bulletin which would interface between MTA and the community
have been the first two major initiatives in this respect. The inaugural con-
ference will be held during January 3-5, 2019, at the Homi Bhabha Centre
for Science Education (HBCSE, TIFR, Mumbai), and has received an enthu-
siastic response from the teaching community, including from a large number
of high school teachers.

For bringing out a Bulletin an Editorial Board was constituted, in Septem-
ber 2018, with B. Sury as the Editor in Chief, and it is very heartening that
the Board has put together within the short time-frame a nice set of articles,
on Blackboard, that no doubt would enthuse many teachers and students of
mathematics, in joining in and participating in the collective endeavour that
is envisaged. In the process the Board has aptly availed, in particular, of
the occasion of award of the Fields medals of 2018, a global event of great
significance to the mathematical community, as a celebration of excellence
in mathematics. On the other hand, as should be clear from the Editorial,
Blackboard is committed to promotion of excellence as well as antyodaya, en-
lightening everyone, and it would surely be reflected in the forthcoming issues
more transparently, as we move on, with greater involvement with teachers
and students through their participation and feedback.
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It is a matter of great pleasure, coupled with fond anticipation, that the
first issue of Blackboard is being released, at our inaugural event, on January
3, 2019, the 188th birth anniversary of Savitribai Phule, who was instrumen-
tal in ushering major educational transformation in her time. The readers
are urged to enjoy and engage with the ideas, and to participate in the ac-
tivity in various ways. Be assured that your contributions and suggestions
would receive a warm welcome, as Blackboard looks forward to serving as a
discussion forum for the mathematical community.

... S G Dani, UM-DAE Centre for Excellence in Basic Sciences
(CBS), Mumbai.
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3 Needed: a problem solving culture by R

Ramanujam

Institute of Mathematical Sciences, Chennai
email:jam@imsc.res.in

What does mathematics really consist of? Axioms (such as the
parallel postulate)? Theorems (such as the fundamental theo-
rem of algebra)? Proofs (such as Goedel’s proof of undecidabil-
ity)? Definitions (such as the Menger definition of dimension)?
Theories (such as category theory)? Formulas (such as Cauchy’s
integral formula)? Methods (such as the method of successive
approximations)?

Mathematics could surely not exist without these ingredients;
they are all essential. It is nevertheless a tenable point of view
that none of them is at the heart of the subject, that the math-
ematician’s main reason for existence is to solve problems, and
that, therefore, what mathematics really consists of is problems
and solutions.

Paul Halmos

What Halmos says would resonate with anyone who enjoys mathematics.
For most, enjoyment of mathematics begins with problem solving, and only
later does it translate to the aesthetics and elegance of the other ingredients
referred to by Halmos. For many outside the academia, solving a Sudoku
puzzle offered by the newspaper might be a source of humble enjoyment. For
those who travel the high roads of mathematical research, esoteric problems
incommunicable to others might be their obsessions. For students of mathe-
matics, or more generally, the mathematical sciences, problem solving is akin
to daily physical exercise: without a daily regimen, their learning would not
be “in shape”.

All this may seem rhetorical, but if you ask a class of children in Class 9
what problem solving means to them, it is easy to see the abyss of perception
between such rhetoric and what children perceive. This is not much different
when we get to older students in classes 10 to 12, and rather sadly, with many
undergraduate students as well. For most, problem solving is equated with
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end of chapter exercises in textbooks, no caveats whatsoever. The sole reason
to solve these problems / exercises is to be able to do similar ones in exami-
nations. Problem solving is a particular kind of questioning in tests peculiar
to mathematics (and physics, to a lesser extent in chemistry, economics and
a few other subjects). This has been confirmed to me by several batches of
students over two decades. (Children who participate in Olympiads are a
different breed altogether; I do not mean them in this discussion.)

When the same question is asked to school teachers of mathematics, the
importance of problem solving is emphasized by most, and indeed glorified.
However, when pressed for examples of problem solving experience, most
revert to end of chapter exercises in textbooks. The experience with teachers
of college mathematics is not very different.

The reason for this is obvious to all of us: the shadow of board exami-
nations looms large over secondary education and influences every aspect of
school, and in mathematics it translates to a particular style of questions
asked in examinations which gets equated with problem solving. Since, more
often than not, textbooks are written with preparation for examinations in
mind, chapters develop material to “equip” students accordingly, and end of
chapter exercises test the ability to answer similar questions. Those who set
examinations refer to textbooks either created or prescribed by the Boards
of education, and the cycle is complete.

Undergraduate education is less beset by this preponderance of exami-
nations set far away, but by then, everyone is habituated to this style of
testing. It is also a happy equilibrium when neither teachers nor students
wish to deviate from the norm, rock the boat as it were.

(If I am specifically referring to secondary and tertiary education, it is not
because problem solving is different in elementary schools. Class 7 September
examination is no different from a Board examination in style. However,
there seems to be some willingness to change at the primary and middle
school stage, whereas later there is tremendous rigidity.)

Should it matter? It perhaps need not, had enjoyment of mathematics not
become a casualty in all this. Even those who decry rote learning and calling
for conceptual understanding to be tested in examinations miss this. Problem
solving should be about every day classroom level enjoyment of mathematics,
it should not be the exclusive domain of assessment of student’s learning.

George Polya talks of various kinds of problems, and one of his categories
is Direct application and drill. This is to emphasize the fact that working
out a variety of problems directly stemming from definitions and theorems

9



is essential for mathematics learning. This is needed to acclimatize oneself
with textual material, and often this is needed for procedural fluency, without
which one cannot address material coming up later. But then, these are only
one kind of problems. Unfortunately, end of chapter exercises tend to be
almost all of this kind, and school examinations (very kindly) follow their
lead and most students miss problem solving experience of any other kind.

Open ended and exploratory problem solving and mathematical investiga-
tions are alien to most classrooms. Rather interestingly, most teachers say
there is little time for this, as the syllabus leaves no room for ‘such lux-
ury’. Clearly, mathematical exploration is not seen as curricular activity.
Many teachers are themselves unused to carrying out such exploration and
even those acutely self-aware confess to having very few examples of such
exploration at hand.

When asked for Motivation and fore-runner problems, those one would /
should pose before starting a topic, to motivate the definitions coming up,
many teachers express surprise at such a possibility. Perhaps this is natural
in a classroom culture where one never questions definitions, and motivation
is equated at best with “real life” applications.

What are problems that lead to enjoyment of mathematics at different
stages of learning? Is it possible to construct problems that everyone can
solve and yet offer variants that lead to challenges for the persistent? Can we
have problems that start with hands-on activities and constructions (perhaps
based on trial and error) that lead up the ladder of abstraction into esoteric
conjectures and proofs? Can we distinguish problems that need clever tricks
from those that demand creativity?1

All this is of course within the realm of the possible, and many creative
teachers of mathematics have been doing this for a long time, offering the
taste of mathematics to generations of students. But these are the stuff of
individual heroic stories while the mainstream classrooms resemble physical
drills where all children go through identical motions at the blow of a whistle.

Perhaps what is most urgently needed is creating a healthy predisposition
to problem solving in our classrooms. I always say that when confronted by
a mathematics problem that looks strange and unfamiliar, my first reaction
is PANIC. I think this is normal, or at least I hope so. However, the point

1Of course the answer is yes, why else would I ask? This list cries out for examples of
such problems. I desist from providing them now, but hope that the MTA-I becomes a
forum for sharing them.
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is to go on, keep at it, think a bit, recall ‘stuff’, try things. These are
all delightfully vague, but actually help. We need to communicate to our
students that it is OK to be daunted by the unfamiliar, but that when we
persist, when we can make connections across many different themes, we
make progress and there is enjoyment ahead. This is perhaps best done as
a social activity, when students try things together, discuss, help each other,
and see for themselves that different students bring differing strengths to
situations. This is where exploratory problem solving is at its best, when
there is something for everyone.

I propose one minimum standard for our classrooms. Can we ensure that
every student engages in one enjoyable, exploratory mathematical activity every
year of her school / college? For those who study mathematics for 10 years,
this should mean at least 10 such experiences, more for those who go on with
mathematics for higher levels. I hope I do not sound officious or insulting
in offering such a low threshold, but a vast literature suggests that for a
majority of students, enjoyable mathematics stops at the primary school, so
it is indeed justified to propose such a minimum standard. On the other
hand, if we cannot ensure even one exploratory mathematical activity per
year for each student, what would “covering” the syllabus mean?

Succeeding in this requires ushering in a culture of problem solving to
our classrooms, one where it is normal for students to talk mathematics.
When every teacher carries in her notebook 10 problems to pose to students,
preferably 5 of which she cannot solve, and the students in turn have problems
for her (and for each other) to solve, we would all see a transformation of
mathematics education, one that is meaningful and enjoyable.
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4 History in the Classroom: Approximating

the Sine Function by Amber Habib

Department of Mathematics, Shiv Nadar University.

When we seek ways to make the learning of mathematics more enjoyable,
one suggestion is to increase the human element by bringing in the history
of the subject. For example, the 2006 position paper of the National Focus
Group for the Teaching of Mathematics stated that

Lives of mathematicians and stories of mathematical insights are
not only endearing, they can also be inspiring. . . Mathematics
has been an important part of Indian history and culture, and
students can be greatly inspired by understanding the seminal
contributions made by Indian mathematicians in early periods of
history.

As time passes we view mathematics in different ways. To us, the solving of
a quadratic equation is an exercise in manipulating symbols. Four thousand
years ago it was part of the understanding of the areas of squares and rect-
angles. By taking up cases where the perspective has changed, we can gain
insights into the connections between parts of mathematics. Since we know
so little about the lives of the mathematicians of ancient and medieval India,
this is the only way we can meaningfully bring history into the mathematics
classroom.

In this note we shall describe an intriguing approximation of the Sine
function that was given by Bhaskara, a mathematician who lived in the 7th
century. He is often referred to as Bhaskara I to distinguish him from another,
more famous, Bhaskara who lived in the 12th century. Bhaskara I’s original
work is contained in his ‘major’ and ‘minor’ works called the Maha-bhaskariya
and Laghu-bhaskariya respectively. He is also recognized for his commentary
on the work of Aryabhata. We will use his approximation as an opportunity
to appreciate the usefulness of graphical descriptions of functions.
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A Rational Approximation of the Sine Func-

tion

Prior to Bhaskara I, the Sine function was understood via tables of its values
or of changes in its values. Perhaps these tables served to give the same
insights that a graph gives us today. Even today, when we first learn to
plot graphs we usually first make a table of values, so that the graph does
not really capture new information but gives a different representation of the
existing information. We shall see how useful this visual representation can
be. Of course, we are not claiming that Bhaskara thought in this pictorial
manner.

Let’s start by looking at the sin(x) function from 0 to π, measuring angles
in radians. The graph looks like part of an inverted parabola, the graph of a
quadratic function:

A quadratic function that is 0 at origin and π must have the form y =
Cx(π − x), for some constant C. Now we want the central value of y, at
x = π/2, to be 1. Substituting x = π/2 and y = 1 gives Cπ2/4 = 1 and we
solve this to obtain C = 4/π2. Thus we have a first approximation

sin(x) ≈ 4x(π − x)

π2

How good is this? Let’s compare the graphs of the two functions:
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Not bad! We could easily be satisfied with this. But Bhaskara was not,
so let’s take a closer look. There are two ways of testing the closeness of
quantities: their difference could be close to zero, or their ratio could be
close to 1. (This corresponds to whether we care about absolute error or
relative error) Correspondingly, there are two ways of adjusting a quantity
so that it becomes closer to another – by shifting or scaling. Let’s first look

at the difference
4x(π − x)

π2
− sin(x):

This kind of shape can be generated by a 4th degree polynomial. But ad-
justing the coefficients of that polynomial so that it has zeroes and peaks at
the right locations calls for quite a bit of fiddling. So let’s look at the ratio

of
4x(π − x)

π2
to sin(x) instead:
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This looks much simpler – roughly a quadratic again! To match this, we
need a quadratic that is 1 in the middle. We can’t match the values at 0 and
π as the ratio is undefined there. But we observe that the ratio is symmetric
about π/2 and its value at x = π/6 is

4

π2
× π

6
× 5π

6
× 2 =

10

9

The symmetry tells us the quadratic should have the form g(x) = A(x −
π/2)2 + B. We want g(π/2) = 1 and this fixes B = 1. Then we want
g(π/6) = 10/9 and this gives A = 1/π2. So we have

4x(π − x)

π2 sin(x)
≈ (x− π/2)2

π2
+ 1

or

sin(x) ≈ 4x(π − x)

(x− π/2)2 + π2
=

16x(π − x)

5π2 − 4x(π − x)
.

This is precisely the approximation given by Bhaskara I if we translate it into
modern notation! Let us ask, one last time, how good is our approximation?
And answer again with a graph:
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The two functions are virtually indistinguishable on this scale! Students
who have learned calculus could try to estimate the maximum relative error.
Others could plot the difference or ratio and look for the peaks.

What we have seen here is that a graph can give a good suggestion of the
type of formula that can describe a function, and we can then use specific
values of the function to refine the formula. This is the reverse of what we
usually do, where we merely use data or a formula to plot the graph.

The article The Bhaskara-Aryabhata Approximation to the Sine Function
by Shailesh Shirali (Mathematics Magazine, Vol. 84, No. 2, April 2011) goes
into many aspects of this Sine approximation, such as its accuracy measured
in different ways, how it compares to other approximations, and how the
ideas it suggests can be used to develop fresh approximations. The history
of the development of trigonometry in India offers several such episodes that
can be used to enrich the classroom, including the motives for creating the
Sine function, possible connections with Greek geometry, the techniques for
tabulating Sine values, interpolation methods, and approximations by infinite
series. A good source for much of this is the book Mathematics in India by
Kim Plofker (Hindustan Book Agency, 2012).
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5 Mathematical Olympiads in India by C R

Pranesachar

Formerly of Mathematical Olympiad cell, HBCSE, TIFR at
Department of Mathematics, Indian Institute of Science

Bangalore.

Mathematical Olympiads are contests for gifted students. They are held
at different levels, normally for individuals. Group contests also have been
prevalent for a long time. Most of the contests are for younger students at
the high school level and there are a few for undergraduate students also.
These contests are now held worldwide and have their origins in the Hun-
garian ‘Etovos’ competitions which started in 1894. It took more than half a
century to start International Mathematical Olympiads (IMOs) although the
first IMO started with the small group of seven countries comprising the East
European Bloc. The IMO started in 1959. Several other European countries
such as England and France joined the race in 1960’s and USA in 1970’s.
India’s participation came much later, as the awareness of the competition
was very limited.

In the mid-1980’s Prof. J.N. Kapur of IIT Kanpur, a member of the National
Board for Higher Mathematics (NBHM) persuaded the board members to
start Indian National Mathematical Olmypiad (INMO) with the help of re-
gional bodies. The interested candidates would first take the examination
at the regional level in December, and the top 15 to 20 students from each
region would be invited to write the national level Olympiad in February.
About 300 to 400 students would participate in the INMO. The first INMO
took place in 1986.

Earlier in the late 1960’s, Prof. P.L.Bhatnagar of Indian Institute of Sci-
ence (IISc) initiated Mathematical competitions, which were mainly held in
Bangalore and surrounding cities in Karnataka. In the 1970’s Chennai-based
Association of Mathematics Teachers of India (AMTI) organized mathemat-
ical contests for Tamil Nadu (and some other states), and Andhra Pradesh
Association of Mathematics Teachers started conducting contest in Andhra
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Pradesh.

Mathematical Olympiads are written tests and the candidates have to solve
6 to 8 problems during a period of 3 to 4 hours. They are challenging, non-
routine and require some ingenuity to get cracked. In the IMO the test is
held on two consecutive days and on each day the contestant has to solve
three problems in 41

2
hours. Each problem can fetch 7 points. Thus a stu-

dent can score a maximum of 42 points. The medals are decided on cut-offs
which vary from year to year. The topics in which the students have to be
proficient are Algebra, Combinatorics, Geometry and Number Theory.

When India hosted the 37th IMO in Mumbai, 75 countries participated. This
year in 2018 when the IMO was held in Romania, 107 countries participated.
A student who scores 42 out of 42 has a ‘perfect score’. The question papers
are translated by the leaders of the accompanying teams into their National
languages. Normally there are about 50 languages in which the problem set is
translated. Although the answer scripts are evaluated by the leader and the
deputy leader of the team, problem coordinators of the host country would
also participate in the evaluation of all the scripts. There will be about 70
to 80 problem coordinators from the host country. The general rule is that
nearly half the number of contestants will get some medal or the other, the
Gold, Silver, Bronze medals being given in the ratio 1 : 2 : 3 to these toppers.

The problems are generally challenging and need a lot of ingenuity and tal-
ent to be solved. These are nonroutine problems not generally found in text
books at the high school level. The problems are actually proposed by the
participating countries and the host country will have a problem selection
committee which sifts the problems and makes a shortlist of about 30-32
problems, nearly equally distributed over the four areas. The leaders of the
country who assemble 3 to 4 days ahead of the students’ arrival go through
these short listed problems and vote for the final 6 problems in a democratic
process. The tests, the evaluation process, the excursions and the medal
distribution will take about ten to twelve days. Local hospitality will be
taken care of by the host country. For the Indian team, the travel expenses
are borne by MHRD. NBHM funds the local training camps at the RMO
level, INMO level and for the IMO training camps. The IMO training camps
are held for 4 weeks generally during April-May months every year. After a
rigourous selection process six students are chosen to represent India in the
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IMO held in July every year.

Prof. Izhar Hussain of Aligarh Muslim University initiated the process of
participation of the Indian teams in the IMO’s. Prof. Hussain took the
responsibility of conducting RMO’s and INMO’s for several years until his
untimely death in 1994. The first team was trained by only two resource
persons over two years before being sent to represent India in the IMO in
1989. The later batches are being trained by 20 to 25 resource persons every
year. The initial camps were held in IISc, Bangalore and BARC, Mumbai for
the first few years. In 1996 the camps permanently shifted to Homi Bhabha
Centre for Science Education (HBCSE), where training camps for Physics,
Chemistry, Biology and Astronomy Olympiads are also held. So far India has
bagged 11 gold medals, 64 silver medals, 66 bronze medals and 28 Honorable
Mentions in its 30 appearances. There were 107 countries which participated
in Romania in 2018. The highest number was 111 countries that participated
in Brazil in 2017. Romania has held IMO five times. India’s performance
has not been up to the mark in the last 10 years or so except during 2011
and 2012. Also so far 27 problems proposed by India have been short listed
and four of them have made it to the IMO final list.

When India hosted IMO in 1996, we gave away 35 gold medals, 66 silver
medals, 99 bronze medals and 22 Honorable Mentions. The logo for the
Indian IMO had the picture of a peacock and a snake taken from a prob-
lem from Lilavati written by Brahmagupta. In 1995, NBHM which is under
Department of Automic Energy appointed under the chairmanship of Prof.
M. S. Raghunathan, of Tata Institute of Fundamental Research, Mumbai,
three members in the Mathematical Olympiad Cell. Prof. Phoolan Prasad
took active role in the recruitment of the cell members. Prof. V.G. Tikekar
who was the Chairman of the Mathematics Department of IISc provided of-
fice space for the cell. The cell members who were appointed in 1995 have
retired and NBHM is looking for younger people to promote the Olympiad
activity. Now the Olympiad Cell is located in HBCSE, Mumbai, and there
is just one member looking after the olympiad activity.

We mention two important developments in recent times. Since 2015, In-
dia has started participating in the European Girls’ Mathematics Olympiad
(EGMO) and the Asia-Pacific Math Olympiad (APMO) as a Guest Nation.
In general, the olympiad programme has taken positive initiatives in promot-
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ing girl students’ participation in the olympiad activity.

Now we mention a few names who have been involved themselves in the
Olympiad activity since its inception in 1989.

National Coordinators The following were National Coordinators for re-
gional and National Olympiads: Prof. Izhar Husain, Prof. A.M. Vaidya,
Prof. Rajeeva Karandikar, Prof.C. Musili, Prof. S.S. Sane, Prof. V.M.
Sholapurkar, Prof. B. Sury (current).

MO Cell Members: Prof. C.R. Pranesachar (1995-2013), Prof. B.J.
Venkatachala (1995-2015), Prof. C.S. Yogananda (1995-2005), Dr. Prith-
wijit De (2010-to date).

Chairman of NBHM: Prof. M.S. Narasimhan, Prof. M.S. Raghunathan,
Prof. S.G. Dani, Prof. R. Balasubramanian, Prof. V. Srinivas (current).

Problems Proposed to the IMO’s: In all 27 problems proposed by India
have been short listed in the IMO’s and 4 of them have made it to the final.
These are

• C.R. Pranesachar, one problem, IMO 1990

• B.J. Venkatachala, two problems, IMO 1992, IMO 2002

• R.B. Bapat, one problem, IMO 1998

We also have a Hall of Fame of some Indian Medalists and INMO awardees:

• Subhash A. Khot, a two-time medalist was awarded the Waterman
Award (2010), Rolf Nevanlinna Prize (2014), Fellow of the Royal Soci-
ety (2017)

• Niraj Kayal and Nitin Saxena cracked ‘the Primes are in P’ problem in
2002

• Kannan Soundararajan was awarded Salem Prize (2003), Ostrowski
Prize (2011), Infosys Prize (2011) SASTRA Ramanujan Prize (2005),
Morgan Prize (1995)

• Sucharit Sarkar was awarded the Clay Research Fellowship
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The above list is not complete. One can look at the following websites for
information regarding Olympiads:

• https://olympiads.hbcse.tifr.res.in/

• https://www.imo-official.org/results.aspx
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6 The Fields Medal

The International Congress of Mathematicians is a meeting that takes place
every four years. Two to four mathematicians under the age of 40 are awarded
the Fields Medal during the ICM. This is regarded as one of the highest
honours a mathematician can receive. It has been described as the “Nobel
prize of mathematics” although there are several differences. For instance,
it is awarded to mathematicians under the age of 40 and the award is given
only once in four years at the ICM since 1950. The award comes with a prize
money of 15,000 Canadian dollars. The Canadian mathematician J C Fields
established the award, and also designed the medal itself.

The first Fields medalists in 1936 were Lars Ahlfors and Jesse Douglas.
The main purpose is to recognize and support young mathematicians who
have made major breakthrough contributions. In 2014, the Iranian mathe-
matician Maryam Mirzakhani became the first woman Fields Medalist - she
tragically passed away in 2017. Manjul Bhargava was the first Fields medalist
of Indian origin. In all, sixty people have been awarded the Fields Medal.

The most recent group of Fields Medalists received their awards on 1st
August 2018 at the opening ceremony of the ICM held in Rio de Janeiro,
Brazil. Caucher Birkar’s medal was stolen shortly after the event and the
ICM presented Birkar with a replacement medal a few days later. In what
follows, the contributions of the four Fields medalists are detailed.
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Introduction

The first thing that strikes you is the sheer scope, breadth and depth, that
characterizes Akshay Venkatesh’s mathematics. As you look a little closer,
the next thing that strikes you is the length of his published papers. At
this point the reader should skip to the references to see that his papers are
indeed very long. His mathematics is so broad that any other person, and
certainly this applies to me, may not be able to do justice to all of it. If
one is forced to name a subject that Venkatesh works in, then one might
say it’s Number Theory. But he develops and uses techniques from different
areas such as Ergodic Theory, Differential Geometry, Algebraic Geometry,
Lie Theory, Representation Theory, etc. Here’s a sampling of the diverse
topics he has worked on:

1. statistical distributions of arithmetical objects ([3], [5], [4]);

2. subconvexity results for L-functions ([7], [10]);

3. harmonic analysis on p-adic symmetric spaces ([9]);

4. (co-)homology of arithmetic groups ([1], [2]);

5. derived algebras ([6]);

6. automorphic and motivic cohomology ([8]).

The spectrum of problems illuminated by Akshay Venkatesh’s insights is
truly impressive! For this short article, in what follows I adumbrate two
such problems that Venkatesh has worked on: first is in the realms of analytic
number theory and the second in differential geometry. In each section I will
first explain the context, and then Venkatesh’s contribution.
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Subconvexity for L-functions

The topic is best motivated with the classical Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
,

defined as a function of a complex variable s, with the series absolutely con-
verging for <(s) > 1. Riemann proved in a landmark paper in the 1850’s that
this function admits an analytic continuation to a meromorphic function on
the entire complex plane and satisfies the functional equation (2π)−sΓ( s

2
)ζ(s) =

(2π)s−1Γ(1−s
2

)ζ(1− s). There are deep mysteries encoded in the behaviour of
ζ(s) in the critical strip 0 < <(s) < 1. Probably the most famous open prob-
lem in number theory is the Riemann Hypothesis (RH) which asserts that
every zero of ζ(s) in this critical strip is in fact on the critical line <(s) = 1

2
.

A weaker conjecture is the Lindelöf hypothesis (LH)–weaker because it is
implied by the RH–is that ζ(1

2
+ it) = O(tε) for any ε > 0. Knowing the

behaviour of ζ(s) on the lines <(s) = 1 and <(s) = 0, together with stan-
dard ‘convexity bounds’ in complex analysis, gives the convexity estimate:
ζ(1

2
+ it) = O(t1/2). Any improvement over the convexity estimate towards

LH is called a subconvexity result for ζ(s). At the bare minimum, a sub-
convexity estimate may be construed as lending evidence towards LH, and
hence towards RH. The Riemann hypothesis being unreachable, breaking the
convexity bound itself is a holy-grail as it often gives new number-theoretic
insights. More generally, in the Langlands program, there are families of L-
functions attached to automorphic representations of reductive groups that
are the building blocks for the bridges between different areas of mathe-
matics; the Riemann zeta function is literally the simplest example of an
L-function in the Langlands program. A huge industry in modern analytic
number theory is to prove subconvexity results for these L-functions.

Hitherto, most cases of subconvexity involved studying (and bounding)
moments of the L-function at hand. Venkatesh, in a brilliant 109-page paper
[10] in the Annals of Mathematics, which to date is his most cited paper,
introduced a novel ergodic theoretic and geometric technique on bounding
the size of periods of automorphic forms. To quote from the abstract of [10]:

The key features of this method are the systematic use of equidis-
tribution results in place of mean value theorems ... .
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His method not only gives new subconvexity estimates for Jacquet–Langlands
L-functions on GL(2), Rankin–Selberg L-functions on GL(2) × GL(2) and
triple product L-functions on GL(2) × GL(2) × GL(2), but also apparently
admits generalization to higher groups, and furthermore, gives new bounds
for Fourier coefficients of automorphic forms on these groups. For the pur-
poses of this article, let me quote the simplest of his theorems on subconvexity
(see Thm. 5.1 and (5.4) of [10]): Let π be an irreducible cuspidal automorphic
representation of PGL(2) over a number field F of conductor p. Then

L (1/2, π) �π∞ N(p)
1
4
− 1

2400 .

The convexity estimate would have 1/4 in the exponent on the right hand
side.

(Co-)homology of arithmetic groups

Let M be a smooth manifold. Some of the basic invariants attached to M are
the homology groups Hi(M,Z). Dually, we can also consider the cohomology
groups H i(M,Z). Under finiteness hypothesis on M (which most reasonable
manifolds satisfy) one knows that these groups are finitely-generated abelian
groups, and hence have a free part and a torsion part. For the free part, we
can tensor with a field, say Q, and analyze the dimension of Hi(M,Q) as a
Q-vector space (called the i-th Betti number of M) by various techniques.
In contrast, the torsion part Hi(M,Z)tor, which is a finite abelian group, is
far more mysterious. At the very least, one may ask for its order. The study
of such homological invariants is especially interesting when M = Γ\G/K
is a locally symmetric space; here G is a real-reductive group, K a maximal
compact subgroup and Γ a discrete subgroup of G with finite co-volume.
For a locally symmetric space, these invariants are related to automorphic
forms on G and so to number theory involving the group G. The reader
should keep in mind a simple example like G = SL2(R), K = SO(2) and
Γ a finite index subgroup of SL2(Z). Even in such examples, Hi(M,Z)tor is
difficult to understand. One then attempts to understand the behaviour of
these invariants in the limit: we may have a sequence {Mn} of manifolds,
with Mn+1 → Mn being a finite-cover; for example Mn = Γn\G/K, with
Γn+1 ⊂ Γn being a subgroup of finite index.
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In this context, Venkatesh, in collaboration with Bergeron [1] and fur-
thermore with Sengun [2], has made some profound contributions to our un-
derstanding of torsion in the homology of arithmetic groups. Let me quote
a simple and beautiful theorem in [2] which goes like this: Let Mn → M0

be a sequence of congruence arithmetic 3-manifolds, with M0 compact. As-
sume that vol(Mn) goes to infinity. Then, under a certain conjecture they
enunciate in that paper, as n→∞, we have:

log |H1(Mn,Z)tor|
vol(Mn)

→ 1

6π
.

This means that the order of H1(Mn,Z)tor grows exponentially with respect
to the volume of Mn, i.e., we have a huge supply of torsion classes in the first
homology of compact arithmetic 3-manifolds. This opens up deep questions
concerning the arithmetic significance of torsion classes. (Incidentally, Peter
Scholze, another Fields medallist of 2018, has also studied torsion classes,
albeit in specific examples, and with a completely different focus of wanting
to attach Galois representations to these torsion classes.)

To conclude, I would like to say that Akshay Venkatesh’s work sheds
a tremendous amount of light on the arithmetic mysteries encoded in the
geometry of locally symmetric spaces, and his work opens up new and exciting
avenues of research.
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Peter Scholze is a young German mathematician, who has arguably rev-
olutionized arithmetic geometry through his work in p-adic Hodge theory.
In his doctoral thesis, he introduced a class of “fractal-like” spaces, called
perfectoid spaces, into this subject enabling him to compare the geometry
over p-adic fields with geometry in characteristic p. In this brief introduction
to his work, we would like to present some context for his work and indi-
cate some early applications of this theory. In the short span of time since
Scholze’s work, this theory has seen numerous applications and inspired fur-
ther developments in arithmetic geometry.

Arithmetic geometry is a subject born out of the rich interplay between
the arithmetic of solutions to families of polynomial equations and the ge-
ometry of their zero loci. The zero loci of a family of polynomial (with
integer coefficients) is an algebraic variety. Modern arithmetic algebraic ge-
ometry connects together apparently disparate mathematical objects in very
beautiful and often mysterious ways. Much still remains conjectural and are
subject of intensive research. At the outset, these conjectures predict an
interplay between the symmetry in algebraic varieties, their geometry, and
the arithmetic encoded in a generating function that possess a large group
of symmetries.

Let us begin by illustrating this circle of ideas by giving some examples.

Arithmetic symmetries in roots of polynomial

equations

Recall that a polynomial in one variable is said to be monic if its leading
coefficient is 1. The group of symmetries in the set of solutions to a monic
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Figure 1: Bird’s-eye view of Arithmetic Geometry

polynomial is called the Galois group of the polynomial. The group of all
symmetries in solutions as we run over all possible monic polynomials is
called the absolute Galois group of the rational numbers. This is the most
fundamental object of interest in arithmetic geometry!
Example.

Let us take a monic quadratic polynomial with integer coefficients, say x2 −
2x+ 3. The set of solutions is then given by the quadratic formula

{1 + i
√

2, 1− i
√

2}.

Note that the solution possesses a non-trivial symmetry: namely, the complex
conjugate of a solution to this polynomial is still a solution to this polynomial.

As another example, let us take the polynomial x3−2. The set of solutions
is then given by { 3

√
2, ω 3
√

2, ω2 3
√

2} where ω is a primitive cube root of unity.
As in the last example, the complex conjugation is a symmetry; since 3

√
2 is

a real number, it is invariant under this symmetry; it is easily verified that
the complex conjugate of ω is ω2, so this symmetry interchanges ω 3

√
2 and
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ω2 3
√

2. There is another one in this case:

3
√

2 7→ ω
3
√

2

ω 7→ ω.

By arranging these roots as vertices of an equilateral triangle, one may visu-
alize these symmetries. The complex conjugation corresponds to reflection
about the vertex 3

√
2 and the other symmetry corresponds to rotation coun-

terclockwise. Thus, the Galois group of this polynomial coincides with the
group of planar symmetries of an equilateral triangle.

3
√

2 3
√

2

ω 3
√

2 ω 3
√

2ω2 3
√

2 ω2 3
√

2

	

Figure 2: Symmetries of the solution to the polynomial x3 − 2

The fundamental theorem of algebra tells us that any polynomial of degree
n has n roots over the complex numbers. Thus the set of roots over the
complex numbers is not a very interesting geometric object: it is a discrete
collection of points. However, the situation changes dramatically, when one
looks at polynomial equations in two variables.

Let us consider the polynomial equation y2 = x(x2 − 1). The zero locus
{(x, y) : x, y ∈ C and y2 = x(x2 − 1)} over the complex numbers is called
an elliptic curve; viewed over the complex numbers, the zero locus is, geo-
metrically speaking, torus but this is not all obvious. And it follows from
this that the zero locus has another surprising feature, namely that there is
an addition law! That is, given two points P and Q satisfying the equation
y2 = x(x2 − 1), there is a third point P +Q that also satisfies this equation.

To graph the set of complex solutions, namely {(x, y) ∈ C × C : y2 =
x(x2 − 1)}, we will need 2 complex dimensions or 4 real dimensions! So we
content ourselves with a graph of real solutions to the equation y2 = x(x2−1)
which can indeed be drawn on the usual cartesian plane.
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A rational point on the elliptic curve is a solution P = (x, y) where both
x and y satisfy a polynomial with integer coefficients. The arithmetic sym-
metry on the set of rational points is then realized by the absolute Galois
group of Q permuting these rational points!

In general, the zero locus of a collection of polynomial equations does not
carry all these additional structures. A theme in mathematics since the late
19th century has been to associate cohomology theories to geometric objects.
A cohomology theory associates an invariant, typically a group, to a class
of geometric objects and allows us to compare different geometric objects in
that class. The symmetries in the geometry of these objects is then reflected
in its cohomology.

Viewed as a complex manifold, every algebraic variety carries at least two
different cohomology theories. The first, called the singular cohomology, is
defined purely in terms of its topology. The second, called its de Rham
cohomology, is an invariant defined using some analytic information on the
algebraic variety; very loosely, it measures the extent to which the fundamen-
tal theorem of calculus fails on these algebraic varieties. In the 50s, efforts
by many mathematicians culminated in a comparison theorem between these
two cohomology theories.

An unsatisfactory point in these theories is that it is very hard to recover
the arithmetic symmetries in the algebraic variety by studying these coho-
mology theories. In the 60s, Grothendieck and his collaborators developed a
theory, called the étale cohomology, that allows us to recover these arithmetic
symmetries! Thus, the upshot is that one can typically associate to an alge-
braic variety its arithmetic symmetries. This manifests itself as the action
of the absolute Galois group on a certain cohomology theory for algebraic
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varieties.

Generating functions of arithmetic origin

We now turn to generating functions of arithmetic origin. A “generating func-
tion” is mathematicians’ speak for a ledger or an accounting book. Except
we are now going to keep track of some arithmetic invariant about algebraic
varieties and in a power series in q.

To describe the arithmetic invariants we are going to keep track of, we
must discuss a new system of arithmetic that is colloquially called the p-
clock arithmetic.

The p-clock arithmetic

Let’s briefly review an example: Suppose we start running a washer-and-drier
system with your clothes in it at 11am. If the washer takes an hour, drier an
hour and it takes an hour to fold clothes, then we should expect the laundry
to be done at 2pm. In this case, notice how when we hit noon (12), we reset
our numbers to 0 and start counting from 0.

This process can be done with any number instead of just 12. While we
never multiply time, it turns out that the clock arithmetic system has a well-
defined multiplication. In other words, just like the usual arithmetic, we can
add two numbers, multiply two numbers, there is a number that behaves like
0 (in that adding this number to any other number gives that number back),
there is a number that behaves like 1 (in that multiplying this number to
any other number gives that number back). The clock arithmetic in which
we reset our clocks at a prime number p is called p-clock arithmetic. In this
case, it turns out that we might even divide a number by another non-zero
number. Such a system of arithmetic with properties so close to the usual
system of arithmetic (like rationals, real numbers or complex numbers) is
called a field.

To illustrate this, let us consider the 3-clock arithmetic. In this arithmetic
system, there are three distinct numbers {0, 1, 2}. And we have 1+2 = 3 = 0,
2 · 2 = 4 = 1 and so on.

Equipped with this new system of arithmetic, we are now ready to de-
scribe our generating functions for the examples of last section.

32



Example.

Given a family of polynomials with integer coefficients, we may view them
as polynomials with coefficients in p-clock arithmetic for every p. Instead
of considering their complex solutions, we might want to count the number
of solutions in p-clock arithmetic. For a polynomial f (as in examples of
last section), let Np(f) denote the number of solutions to the polynomial
equation f = 0 in p-clock arithmetic.

Let us take the polynomial x2 − 2x + 3. Some of our intuition about
polynomials with integer coefficients carries over even when working with
p-clock arithmetic. For example, one easily checks by completing the square
that this polynomial has 2 roots if and only if −2 is a square in p-clock
arithmetic; and it has no solutions otherwise.

In the 2-clock arithmetic, 2 = 0 and 3 = 1, and so x2 − 2x + 3 = x2 + 1.
So the polynomial has 2 solutions in 2-clock arithmetic, namely 1 repeated
twice. In the 3-clock arithmetic, 3 = 0 and so x2−2x+3 = x2−2x = x(x−2).
So the polynomial has 2 solutions in 3-clock arithmetic, namely 0 and 2. Here
is a table of the number of solutions to this polynomial in p-clock arithmetic
for primes up to 50:

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Np(x
2 − 2x+ 3) 2 2 0 0 2 0 2 2 0 0 0 0 2 2 0

It turns out remarkably that Np(x
2 − 2x + 3) is the coefficient of qp in the

following q-series
1

2

∑
(x,y)∈Z2

qx
2+2y2 ;

in this sense, it is the generating function for the arithmetic data tabulated
above. This q-series is called an ‘Eisenstein series’ of weight 1 and level 8.

Similarly, we have the following table for the example x3 − 2:

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Np(x
3 − 2) 3 3 1 0 1 0 1 0 1 1 3 0 1 3 1

Once again, the number Np(x
3 − 2) is the coefficient of qp in the following

q-series ∑
(x,y)∈Z2

(−1)x+yq9(x2+3y2)+3(x+y)+1
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This q-series is called a ‘cusp form’ of weight 1 and level 108.
For our final example, we return to the elliptic curve y2 = x(x2 − 1).

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Np(y
2 − x(x2 − 1)) 2 4 8 8 12 8 16 20 24 40 32 40 32 44 48

ap = p+ 1−Np 1 0 −2 0 0 6 2 0 0 −10 0 −2 10 0 0

And yet again, for primes p > 2, the number ap is the coefficient of qp in the
following q-series

q − 2q5 − 3q9 + 6q13 + 2q17 − q25 − 10q29 − 2q37 + 10q41 + 6q45 − 7q49 + . . . .

This q-series is a cusp form of weight 2 and level 32 and can be given an
explicit closed form but it involves some subtle calculation in the Gaussian
integers Z[i] = {x + iy : x, y ∈ Z}, namely those complex numbers whose
real and imaginary parts are both integers.

The arithmetic generating functions that we have encountered so far are
called “modular forms” (or more generally, automorphic forms).

Arithmetic and geometry over p-adic fields

Scholze studies algebraic varieties defined over p-adic fields. These fields
have a fractal-like structure and so geometry over these fields could be quite
counterintuitive. In this section, we shall briefly discuss what p-adic numbers
are!

A p-adic number is an infinite series of the form

∞∑
k=−N

akp
k (1)

where the 0 6 ak 6 p − 1. The numbers (a−N , a−N+1, . . . , a0, a1, . . . ) are
called the p-adic digits of this p-adic number. Just like decimal numbers,
we will think of ak as having place pk. One can add two p-adic numbers by
adding their p-adic digits with carry. Here is an example involving 3-adic
numbers:(

1

32
+

1

3
+ 1 · 3 + 2 · 32

)
+

(
2

3
+ 1 · 3 + 1 · 32

)
=

1

32
+ 1 + 2 · 3 + 1 · 33.
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The reader should note how the digits with place value 3−1 when added
result in a number with higher place value 30; similarly, the digits with place
value 32 when added result in a number with higher place value 33. One can
analogously multiply two p-adic numbers and one can divide a p-adic number
by another non-zero p-adic number.

One of the first applications of the notion of a perfectoid space was to
settle the weight-monodromy conjecture in many general cases. Suffice it
to say that, this conjecture predicts a certain regularity in the cohomology
of algebraic varieties over p-adic fields. The weight monodromy conjecture
was proposed by Pierre Deligne in 1970; this conjecture was inspired by
an analogous theorem he proved for algebraic varieties defined with p-clock
arithmetic.

Enter: Scholze’s perfectoid spaces

There is a very closely related field of Laurent series where the coefficients
come from the field with p elements and the clock arithmetic. A Laurent
series with p-clock arithmetic is an infinite series of the form

∞∑
k=−N

akt
k (2)

where ak are now between 0 and p−1. The numbers a−N , a−N+1, . . . , a0, a1, . . .
are called coefficients of the Laurent series. Despite the fact that expression
(2) looks almost identical to (1) with t in place of p, there is one key dif-
ference between a p-adic number and a Laurent series: one uses the p-clock
arithmetic where p = 0, p + 1 = 1 and so on. One can add two Laurent
series with clock arithmetic. To illustrate this, let us consider the example
of 3-adic numbers we had seen before, but now with 3-clock arithmetic:(

1

t2
+

1

t
+ 1 · t+ 2 · t2

)
+

(
2

t
+ 1 · t+ 1 · t2

)
=

1

t2
+ 2 · t.

The reader should note that 1
t

+ 2
t

= 3
t

= 0; similarly, 2t2 + t2 = 3t2 = 0.
Two French mathematicians, J.-M. Fontaine and J.-P. Wintenberger, proved

a remarkable theorem relating the group of symmetries of a polynomial p(x)
over the field of Laurent series with that of the polynomial p](x) obtained by
replacing t with p1/pn where n is some large positive integer.
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Scholze’s ideas systematizes this construction allowing us to compare the
cohomology of algebraic varieties over p-adic fields with cohomology of the
algebraic varieties over fields with p-clock arithmetic. This allows Scholze to
relate the weight monodromy conjecture of Deligne to Deligne’s theorem for
varieties defined with p-clock arithmetic!

We end here by remarking that an interested reader will find an introduc-
tion to these ideas in the expository articles by Scholze [4], Bhatt [1] and
Fontaine [2]. A more advanced reader would enjoy the original paper [5] by
Scholze introducing these objects.
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As is well known, Professor Alessio Figalli was awarded the Fields medal
this year for his remarkable contributions in the field of Analysis, Partial
Differential equations and Geometry. This is indeed a great incentive for the
subjects of Analysis and PDE in which he is certainly one of the luminaries.
Needless to say, a comprehensive overview of his scientific work is not possible
in this short space given the fact that at an age of 34, he already has about
150 publications most of which are in leading mathematics journals. However
more important than this number is the breadth and depth of his scientific
articles which reflect his immense technical power, insights and creativity.
Some of his works have genuinely opened up new directions for future research
and this note is just a humble attempt to touch upon a few of them.

Figalli is one of the leaders in the use of optimal transport to various geo-
metric and functional inequalities such as the isoperimetric inequality as well
as its applications to regularity questions in certain nonlinear PDE’s. Opti-
mal transport roughly consists of finding the cheapest way of transporting a
distribution of mass from one place to another. The first analysis of a proto-
typical optimal transport problem was carried out by G. Monge around 250
years ago. In the 1980’s-1990’s, several theoretical advancements were made
in optimal transport which led to further applications in diverse areas such as
town planning, image processing etc and it also triggered new developments
within different areas of mathematics such as geometry and PDE. One of the
most prominent example of this kind is the work of Figalli with F. Maggi and
A. Pratelli on isoperimetric problems. The classical isoperimetric problem
asks the question that among all smooth domains Ω with a prescribed surface
area for the boundary ∂Ω, which shape maximizes the volume and it turns
out that the Euclidean balls are the unique extremizer of such an inequality.
This in particular provides a quantitative justification for the precise spheri-
cal shape of soap bubbles which has to minimize a certain energy called the
surface tension of the soap film. More generally while studying the physics
of crystals which also attain a configuration that is energy minimizing and
where the energy is dictated by the corresponding micro-structure, it is a
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natural question to ask as to how the shape of the crystal changes with an
application of external energy. It turns out that this in turn can be cast
as a problem concerning quantitative stability of certain anisotropic variants
of the classical isoperimetric inequality. Figalli with his collaborators de-
rived various sharp quantitative versions of such inequalities using optimal
transportation which in particular establishes the stability of the configu-
ration of crystals i.e. if the energy added is small, then the change in the
configuration is moderate as well. Over here, we would also like to mention
that isoperimetric inequalities are also connected to certain well known func-
tional inequalities in analysis which are referred to as the Sobolev inequalities.
This connection goes back to a visionary observation independently made by
Mazya and Fleming-Rischell in 1960. Sobolev inequalities play a pivotal role
in the existence and regularity for partial differential equations. In recent
years, Figalli with his student R. Neumayer also studied similar stability
questions for Sobolev inequalities and obtained a sharp quantitative result
and thereby settling a long standing conjecture of Brezis and Lieb. Also in
another remarkable joint work with Carlen, Figalli also addressed the stabil-
ity analysis of logarithmic Hardy-Littlewood-Sobolev inequalities which was
then used to describe the large time behavior for a certain evolution equa-
tion known as the critical mass Kuramoto-Sivashinsky equation that models
diffusive instabilities in flame propagation type situations.

Another example of Figalli’s work is his deep contribution to new regular-
ity properties for the Monge Ampere equation which is a nonlinear second
order equation of a special kind and arises naturally in several problems in
Geometry such as the prescribed Gauss curvature and also in optimal trans-
port. In a striking paper with De Philippis, he obtained a fundamental reg-
ularity result for solutions to the Monge-Ampere equation which in turn had
applications to optimal transport maps. In particular, first with De Philip-
pis, he showed that solutions to Monge Ampere equations with right hand
side bounded away from zero and infinity have integrable second derivatives.
Subsequently with O. Savin, using very novel and extremely original ideas,
they showed a non-trivial higher integrability result for second derivatives of
solutions which was the precise improvement needed to apply the optimal
transport theory to the existence and regularity for an important nonlinear
equation in fluid dynamics known as the semi-geostrophic equation. This
later work was carried out by De Philippis and Figalli together with Ambro-
sio and Colombo and they obtained a completely answer for the case of three
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dimensional convex domains. We note that in the context of semi-geostrophic
equations, Monge Ampere equations expresses the optimal transport of one
density to another where the cost is a multiple of the square of the distance
travelled. Given a certain density (say that of water particles in fluids), the
solution of the Monge Ampere equation provides the optimal transport map
and the Monge Ampere operator acting on the solutions represent the volume
density of the image. We also note that this higher integrability result of Fi-
galli with coauthors for second derivatives of solutions is in some sense one of
the most significant development in the regularity theory for Monge Ampere
equations since the ground-breaking work of Caffarelli in the early 1990’s
where he showed that for appropriately defined “generalized” solutions, if
the right hand side is Hölder continuous, then all the second derivatives are
in fact Hölder continuous.

Figalli has also obtained interesting regularity results for several nonlinear
degenerate problems where the classical theory fails. The regularity theory
for nonlinear elliptic operators with degenerate ellipticity at isolated points
was pioneered by Uraltseva in the 1960’s and such results were substantially
streamlined and extended in the late 1970’s and early 1980’s in the funda-
mental works of Uhlenbeck, Lewis and Tolksdorf. Such equations arise in
Non-Newtonian fluid flow. In 2013, in a joint work with M. Colombo, Fi-
galli developed a very elegant regularity theory for elliptic equations whose
degeneracy set can be a large convex set and obtained sharp results in this
direction. A very interesting aspect of this work is that it surprisely combines
perspectives from both divergence as well as non divergence theory.

We now turn our attention to Figalli’s important contributions in the area
of free boundary problems. A classical example of free boundary problem is
the Stefan problem which consists of the studying the regularity property of
the ice-water interface as time evolves when a block of ice is submerged in
water. Another example is that of classical obstacle problem which consists
of minimizing the standard “Dirichlet energy” among a class of functions
with prescribed boundary values whose graphs stay above an obstacle. The
graph of the solution to the obstacle problem can be thought of as a mem-
brane with minimal energy attached to a fixed wire and which stays above
the obstacle. In this problem, it turns out from simple examples that the
membrane can actually touch the obstacle and a very fundamental question
in this subject is to study the regularity of the boundary of the coincidence
set. The ice-water interface in the Stefan problem or the coincidence set in
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the classical obstacle problem is referred to as the free boundary. In prin-
ciple, free boundaries can have singularities like if one looks at the tip of
icebergs or glaciers. A crowning achievement in the regularity of the free
boundary for the classical obstacle problem was made by Caffarelli in 1977
where he showed that for a strictly concave obstacle, the free boundary is
smooth and even real analytic (depending on the obstacle) outside of a set
of singular points whose n − 1 dimensional measure is 0. This essentially
says that at most points, the free boundary is smooth. Later, Caffarelli also
obtained a certain stratification result for singular points and showed that
the singular points are contained in a C1 submanifold. It turns out the study
of regularity properties of free boundaries has a lot of resemblance with that
of the regularity theory for minimal surfaces and this aspect is quite evi-
dent in the work of Caffarelli. Now very recently, Figalli together with Serra
has obtained precise stratification result for the set of singular points in the
classical obstacle problem and showed that the singular points are isolated
upto dimension 3 and also obtained sharp results for the nature of singu-
larities in higher dimension. In particular, they showed that the singular
points are infact contained in submanifolds which are more regular than a
C1 submanifold and this significantly improves upon the previous results of
Caffarelli. Subsequently in a joint work with Serra and Ros Oton, Figalli also
obtained similar stratification result for the singular set in the free boundary
for the Stefan problem. Other than that, in recent joint works with Shahgho-
lian, Figalli has also extended the regularity theory of Caffarelli to certain
non-trivial variants of the classical obstacle problem for fully nonlinear con-
vex operators which in turn has provided a new perspective in the existing
theory besides leading to further developments in the regularity theory for
several nonlinear free boundary problems. There is another interesting vari-
ant of the classical obstacle problem known as the Signorini problem where
the obstacle is situated at the boundary. This is an area which has picked
up a lot in recent times since the breakthrough work of Athanasopoulos and
Caffarelli in 2004 where they obtained optimal regularity of solutions to the
Signorini problem. In a later work with Salsa, they obtained C1 regularity
of the free boundary ( i.e. boundary of the coincidence set) at certain points
on the free boundary where the solution separates from the free boundary at
a minimal order. Such points are referred to as regular points. This analysis
was further refined by Caffarelli, Salsa and Silvestre where they also related
the classical obstacle problem for fractional laplacian to the signorini prob-
lem( or the thin obstacle problem) for certain degenerate elliptic operators.
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It turns out that the complement of the regular set in the Signorini problem
is significantly more complicated compared to the classical obstacle problem
because there are examples to show that the solution can separate from the
free boundary at different rates in the Signorini problem. This makes the
situation quite different from that of classical obstacle problem where the
solution always separate from the free boundary at a quadratic rate under
strict concavity assumption on the obsctale. The first analysis of the singular
set in the Signorini problem was carried out by Garofalo and Petrosyan using
new geometric monotonicity formulas and they obtained a stratification re-
sult at singular points (which are precisely the points where the coincidence
set is asymptotically negligible, say like a needle) and obtained a stratifica-
tion result for the singular set similar to that of Caffarelli for the classical
obstacle problem. However in the signorini problem, it turns out that the
set of regular points (where the free boundary is nice) together with the set
of singular points need not be all of the free boundary and there are explicit
examples to show that the complement can indeed be quite large. How-
ever very recently, Figalli together with Barios and Ros-Oton showed that
quite remarkably, under certain geometric assumptions on the obstacle, such
a complementary set turns out to be empty and one has a similar structure
theorem as that for classical obstacle problem. In a joint work with Caffarelli,
Figalli has also made deep contributions in the classical obstacle problem for
some evolutionary nonlocal equations which appear in Math finance.

Figalli has also made other impactful contributions in Analysis and Ge-
ometry which we now briefly mention. In recent times, a notion of non-
local mean curvature came up in a seminal work of Caffareli, Roquejoffre
and Savin in 2010. This allows to make sense of nonlocal minimal surfaces
which corresponds to the case to vanishing nonlocal mean curvature. Since
then, there has been a lot of activity in that subject. In this direction, in a
very interesting work with Barrios and Valdinoci, Figalli showed that con-
tinuously differentiable nonlocal minimal surfaces are infact smooth. This
combined with some previous work of Caffarelli and Valdinoci shows that
nonlocal minimal surfaces are smooth upto dimension N ≤ 7. In a joint
work with Ciraolo, Maggi and Novaga, he also obtained a nonlocal version of
the famous theorem of Alexandrov which says that constant mean curvature
compact surfaces in the Euclidean space are spheres.

We finally would like to end this article with a quote of Prof. Luis Caf-
farelli about Figalli in his address at the 2018 International Congress of
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Mathematicians in Brazil,

“Figalli’s work is of the highest quality in terms of originality, innovation
and impact both on mathematics per se as well as on its applications. He is
clearly a driving force in today’s global mathematical community”

Acknowledgment: The author would like to thank his colleagues Imran
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ities as well as optimal transport theory which is relevant to this article. He
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The work for which Caucher Birkar won a Fields Medal this year is in the
field of algebraic geometry, more precisely in the birational classification of
algebraic varieties. In this article, we will define algebraic varieties, explain
what is meant by birational classification, and then briefly discuss some of
Birkar’s contributions.

Algebraic varieties are the zero sets of polynomial equations (in several
variables), for example, the classical conic sections that we learn about in
high school, i.e., ellipses, parabolas and hyperbolas. Elliptic curves, which
are given by equations of the form y2 = x3 + ax + b, are more complicated
varieties, and played a fundamental role in the Andrew Wiles’s proof of
Fermat’s Last Theorem. More generally, we can consider zero sets of finitely
many polynomials f1, f2, . . . , fr in finitely many variables x1, x2, . . . , xn, i.e.,
we look at the set

V (f1, f2, . . . , fr) := {(a1, a2, . . . , an) | fi(a1, a2, . . . , an) = 0 for i = 1, 2, . . . , r} .

Here the aj could be elements of the field of real numbers R but it is ac-
tually better to allow them to be elements of the field of complex numbers
C, so V (f1, f2, . . . , fr) ⊂ Cn. The reason for this is that the field C is alge-
braically closed, i.e., any nonconstant polynomial in one variable has a root
in C. Hilbert’s Nullstellensatz, then says that any finite set f1, f2, . . . , fr
of polynomials as above (with coefficients in C) has a common zero, i.e.,
V (f1, f2, . . . , fr) 6= ∅, iff for all other polynomials g1, g2, . . . , gr,

∑r
i=1 gifi 6= 1.

This is far from being true over the real numbers, e.g., consider the polyno-
mial x2 + 1. So even though complex numbers are more complicated than
real numbers, (algebraic) geometry over C is easier than over R!

In particular, Cn itself is an algebraic variety (it is the zero set of the poly-
nomial f ≡ 0) and from now on we denote it by An (called n-dimensional
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affine space). The algebraic varieties that we have defined above in An are
called affine varietes. It turns out that it is better to consider projective
varieties. These are subsets of Pn (which is called projective n-space), which
is defined to be Cn+1\{(0, . . . , 0)}/ ∼, the equivalence classes for the equiv-
alence relation given by (a0, . . . , an) ∼ λ(a0, . . . , an) where 0 6= λ ∈ C. We
suggest that the reader try to see that P1 is given by gluing two disjoint
copies of C with a in the first copy identified with b = 1/a in the second
copy if a 6= 0. For projective varieties, instead of looking at zero sets of
arbitrary polynomials we must consider only homogenous polynomials, i.e.,
polynomials such that each monomial in it is of some fixed degree d. The
reason for this is that only the zero sets of such polynomials are preserved
by the equivalence relation. For example, we can take f to be x2

0 +x1x2 +x2
2

but not x2
0 + x1 + x0x

2
2. Any polynomial in n variables can be made into a

homogenous polynomial in n+ 1 variables by multiplying all the monomials
by appropriate powers of x0; this allows us to get a projective variety from
an affine variety. For example, x2

1 +x2
2−1 becomes x2

1 +x2
2−x2

0, and x1x2−1
becomes x1x2 − x2

0. If we change variables by x1 7→ x1 − x2, x2 7→ x1 + x2,
the second polynomial becomes x2

1 − x2
2 − x2

0, so the hyperbola becomes a
circle: in projective space all conics become “equal”! This illustrates one of
the reasons for preferring projective varieties.

We can also get an affine variety from a projective variety, in fact several
different ones, by setting one of the variables equal to 1 (so the resulting
polynomials have one fewer variable and are not necessarily homogenous). A
more general class of varieties, containing both affine and projective varieties,
is that of quasiprojective varieties: these are of the form X\Y where X and
Y are projective varieties.

Another reason for preferring projective varieties can be seen from the fact
that any two distinct lines (i.e., varieties defined by one equation of degree
1) in P2 intersect in a unique point, so there are no parallel lines! From
the point of view of topology, An is not compact but Pn (with the quotient
topology) is, which also makes the latter nicer.

Even after replacing R by C and then An by Pn, there are still too many
varieties to admit a reasonable classification, so we need to impose some con-
ditions on the varieties that we want to classify. We say that a variety V is
irreducible if it cannot be written as a union of two proper subvarieties, i.e.,
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if V = V1 ∪ V2 for some other varieties V1 and V2 then V = V1 or V = V2.
Any variety V can be written in a unique way as a (minimal) finite union
of irreducible subvarieties—if V is defined by a single polynomial f then
V =

⋃
i V (fi), where the fi are the distinct irreducible factors of f—so we

try to classify only irreducible varieties; from now on, when we say variety
we shall (usually) assume that it is also irreducible.

In order to classify mathematical objects, one usually attaches some in-
variants to them. For example, finite dimensional vector spaces over a field
(e.g., R or C) are classified by their dimension. Any variety V also has a
dimension, denoted dim(V ). We do not define this precisely, but if V = An

or Pn then its dimension is n and if V = V (f) (in An or Pn) is defined by a
single nonconstant polynomial f , then its dimension is n− 1. The only 0 di-
mensional variety is a single point, but for all n > 0 there are infinitely many
(non-isomorphic, i.e., not related by a “change of coordinates”) varieties of
dimension n.

Even classifying all one dimensional varieties is quite difficult, however the
problem can be made simpler by restricting to smooth varieties. Again, we
do not define what this means precisely, but intuitively it means that the
variety has no “sharp” points or crossings. For example, a circle is smooth
but the curves (one dimensional varieties) given by the polynomials x1x2 or
x2

1 − x3
2 have “singularities” at (0, 0). The Fermat hypersurfaces V (f) ⊂ Pn

with f = xm0 + xm1 + · · · + xmn are smooth for all positive m and n. (More
generally, if V = V (f) is a projective variety given by a single polynomial
f then it is smooth if and only if f and all its partial derivatives have no
common zero except (0, . . . , 0).) If a variety is not smooth we say that it is
singular.

A celebrated theorem of Hironaka (for which he received the Fields Medal
in 1966) asserts that any projective variety V is birational to a smooth projec-
tive variety W . Here birational roughly means that after removing a proper
subvariety V ′ from V and W ′ from W we get the same (isomorphic) varieties.
If V is a curve then the theorem is easy and the smooth variety is unique,
but if dim(V ) > 1 there are always infinitely many choices for W .

The classification of smooth projective curves has been essentially known
since the time of Riemann. To each such curve one can attach another

45



invariant called the genus which is a non-negative integer. For a smooth
curve in P2 given by an equation f in x0, x1, x2 this number is (d−1)(d−2)/2,
where d is the degree of f ; note that we do not get all positive integers this
way. Nevertheless, the classification theorem for curves says that for any
g ≥ 0 there exists a curve of genus g, in fact the set of isomorphism classes
of curves of genus g correspond in a natural way to the set of points of a
variety Mg (called the moduli space of smooth projective curves of genus g)
where

• M0 is a single point (the only curve of genus 0 is P1 ),

• M1 is A1 (corresponding to the “j-invariant” of an elliptic curve),

• Mg has dimension 3g − 3 if g > 1.

To understand the classification in more detail one studies the properties of
the varieties Mg, but we do not discuss this here.

To get some feeling for birational varieties, we now discuss the process
of blowing up: given a smooth n-dimensional variety V and a point v ∈ V
this produces a new (smooth) variety BlvV which is almost the same as V
except that v is replaced by Pn−1. Since P0 is a single point we get nothing
new if n = 1, but if n > 1 this gives a variety which is birational to V but
not isomorphic to V . We can choose various points in V and also iterate
this procedure, so if dim(V ) > 1 we get infinitely many (smooth, projective
if V is projective) varieties birational to V . Let us consider the case when
V = A2 and v = (0, 0) in more detail. Then Bl0A2 is (A2

∐
A2)/ ∼, so we

are gluing two disjoint copies of A2 and the equivalence relation ∼ is given
by identifying (a1, a2) in the first A2 with (b1, b2) = (1/a2, a1a2) in the sec-
ond A2 if a2 6= 0; it can be shown that this is a quasiprojective variety. We
get a map p : Bl0A2 → A2 by sending (a1, a2) in the first A2 to (a1, a1a2)
and (b1, b2) in the second A2 to (b1b2, b2). It is easy to see that p−1(v) is a
singleton if v 6= 0, but E = p−1(0) (the so called “exceptional divisor”) is the
union of all (0, a2) in the first A2 and (b1, 0) in the second A2 which is exactly
P1. The map p is called the blowup of 0 ∈ A2 or the blow down of E ⊂ Bl0A2.

Having understood blowups we return to the question of classification.
Since there are infinitely many varieties birational to a given variety V in
general, we first try to find a minimal model of V . Roughly speaking, this is
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a variety W which is birational to V (so a “model” of V ) and which is not
obtained from blowing up any other variety (so it is “minimal”). It turns out
that for smooth projective two dimensional varieties, i.e. surfaces, this can
always be done and moreover the minimal model is usually, but not always
unique. The varieties for which the minimal model is not unique are the so
called uniruled varieties: these are those varieties V such that for all v ∈ V
there is a copy of P1 contained in V and containing v, e.g. V = Pn. All this
was understood close to a hundred years ago by the so called Italian school
of algebraic geometery (Castelnuovo, Enriques, Severi,. . . ).

Finding minimal models of varieties of dimension > 2 turned out to be
significantly more difficult. A basic stumbling block was the fact that there
need not exist any smooth minimal model! It was Mori in the 1980’s who
discovered the correct way to proceed and formulated the Mori program or
the Minimal Model Program (MMP). One is forced to give up the luxury of
dealing with only smooth varieties and some varieties with “mild” singulari-
ties have to be allowed. Mori then succeeded in constructing minimal models
for three dimensional varieties and for this work he was awarded the Fields
Medal in 1990.

In the MMP, one starts with a smooth projective variety V and tries to
make it minimal by systematically blowing down (i.e., contracting) suitable
subvarieties of V . At some stage the variety might become singular, but if
the singularities are “mild” one can still continue. However, if dim(V ) ≥ 3
it can happen that the singularities are very bad (“non Q-factorial”) and so
one gets stuck. To get around this one has to introduce a new operation
called a “flip” which tries to improve the singularities (without blowing up).
The main difficulty with this is proving that this can always be done (exis-
tence) and that the program will stop after finitely many steps (termination).

For existence, Mori had to use very detailed classification of three dimen-
sional singularities which was impossible to extend to higher dimensions. In
the first major work of Birkar (in collaboration with Cascini, Hacon and
McKernan) the existence of flips was proved in all dimensions using an in-
ductive procedure and without explicit computations. Although termination
is still not known in general, the above authors managed to prove it in many
important cases, sufficient to imply the finite generation of the canonical ring
(also independently proved by Siu).
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This is a graded ring R(V ) =
⊕∞

i=0Ri attached to a smooth projective
variety V (defined using “pluricanonical forms”), where R0 is C and each
Ri is a finite dimensional C-vector space. Two varieties which are birational
have the same canonical ring, so it is a birational invariant. If this ring
is finitely generated, using it one can construct a variety V can, called the
canonical model of V ; birational varieties have the same canonical model.
Now dim(V can) ≤ dim(V ); if the dimensions are equal then V can is actually
birational to V and V is said to be of general type. For example, if V = V (f)
is a smooth subvariety of Pn then V is of general type if deg(f) > n + 1,
so in some sense most varieties are of general type. However, it can happen
that V can is a point, or even the empty set, in which case we do not get any
information about V from the canonical ring. In fact, in a suitable sense, any
variety can be built from varieties of general type, varieties with V can a point
(Calabi–Yau varieties, e.g., V (f) with d = n+1) and a class of varieties with
V can = ∅, the so called Fano varieties (e.g., V (f) with d ≤ n). We mention
here that the Abundance conjecture, one of the fundamental conjectures of
the MMP, which implies a precise form of the statement in the previous sen-
tence, is still known only in dimensions ≤ 3.

While there are still many mysteries associated to Calabi–Yau varieties,
the second major work of Birkar proves a fundamental result about Fano
varieties, the so called BAB conjecture. Here it is crucial for applications
that one allows certain singular varieties, the result for smooth varieties be-
ing known more than two decades ago. In essence, the result says that for
any ε > 0 there exists a function Fε : N → N such that all Fano varieties
of a given dimension n and with bounded singularities (“ε − lc”), can be
embedded in (i.e., are isomorphic to subvarieties of) PF (n). This is the first
step in constructing moduli spaces for Fano varieties (like the spaces Mg for
curves).

A striking application of this result is as follows: A theorem of Jordan
from the nineteenth century says that there is a function J : N→ N so that
any finite subgroup of GLn(C) (the group of invertible n×n matrices) has an
abelian normal subgroup of index≤ J(n). The n dimensional Cremona group
Cn is the group of automorphisms of the field Kn = C(x1, x2, . . . , xn) (the
fraction field of the polynomial ring C[x1, x2, . . . , xn]) which are the identity
on C ⊂ Kn. While the explicit structure of this group is known only when
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n = 1, and it is known to be infinite dimensional for n > 1, as a consequence
of the results of Birkar (via a theorem of Prokhorov and Shramov) it follows
that there exists a function B : N → N so that any finite subgroup of Cn
contains an abelian normal subgroup of index ≤ B(n), i.e., the Cremona
groups have the Jordan property.
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Masaki Kashiwara: The Chern Medal 2018 awardee

The Chern Medal was awarded to Masaki Kashiwara for outstanding,
foundational and sustained contributions over an almost 50 year period to
algebraic analysis and representation theory. The ICM 2018 video [1] about
the awardee shows a sprightly 71 year old Kashiwara leaping over stones,
crossing a stream to go to his office in Kyoto, Japan. Masaki is an emeri-
tus professor with Kyoto University. The Chern Medal is awarded once in
four years during the ICM to an individual “whose accomplishments war-
rant the highest level of recognition for outstanding achievements in the field
of mathematics. All living, natural persons, regardless of age or vocation,
shall be eligible for the Medal” [2]. Kashiwara credits his start in Mathemat-
ics to his supervisor Mikio Sato. As a graduate student he learnt algebraic
analysis and representation theory. He began developing microlocal analysis
which uses Fourier transforms to the study of partial differential equations,
localisation with respect to location of the point in the space as well as the
cotangent space at that point. The concept of D-modules started by Sato
and then completed by Masaki, allows a bridge between areas of algebra and
analysis. A D-module is a module over a ring D of differential operators.
Kashiwara used D-modules in 1980 [3] to prove the generalised Riemann-
Hilbert Problem: for every monodromy group, is there an associated linear
differential equation whose behaviour near a singularity is described by that
group? A seminal contribution made by Kashiwara to representation theory
and one which bears his name is the ‘Kashiwara Crystal Basis’. This al-
lows for the use of counting arguments or combinatorics to answer questions
posed in representation theory. Both D-modules and Kashiwara Crystal Ba-
sis have become essential tools in many areas of mathematics. For a short,
reader-friendly account of D-modules and Crystal Basis, see [4] and for a
short mathematical talk about Masaki Kashiwara’s work of fifty years see
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[5]. Another interesting nugget of information from the ICM video, is that
Kashiwara has several hundreds of notebooks filled with mathematics. He
learnt to write his mathematics in notebooks after losing the sheets in which
he recorded his ideas in his early days as a mathematician. The sheer num-
ber of these notebooks is a further affirmation of his prolific mathematical
contributions at the highest level.

David Donoho: The Gauss Prize 2018 awardee

The Gauss prize is awarded to a scientist whose research in mathematics
has had an impact outside of the mathematical realm be it in technology, in
business, or simply in people’s everyday lives. David Donoho’s mathematical
work ticks all the three boxes. David is a professor at Stanford University
in the Department of Statistics, as well as the Anne T. and Robert M. Bass
Professor in the Humanities and Sciences. David’s plenary lecture at ICM
2018 [6] had several deeply personal anecdotes that brought to the fore the
need for faster and better MRI sensing. One of the anecdotes was about
the fact that his wife had undergone brain surgery when she was younger
and that inspired his son to become a neurosurgeon. The need to know
via MRI scanning as to what can be expected before opening up the brain
of a patient is not just essential, it is one of the main tools in planning
ahead for the surgery. Through his son and other medical fraternity, David
discovered the problems that existed with MRI scanning in the early 2000’s.
Donoho also lost his father around then to an aggressive form of prostrate
cancer which was not diagnosed properly. Another doctor who had been
working on prostrate cancer mooted the idea of mass MRI scans for prostrate
cancer as a diagnostic tool, a sort of ‘Manogram’ as David put it in his ICM
lecture. ‘Better, Faster MRI’s’ would not just save money in the longer
run by delivering accurate diagnosis, say by catching an aggressive type of
prostrate cancer at an early stage but most importantly save lives. What
all these connections spurred David to do was to develop the mathematics
by 2006 [7] which has now been used by three of the technology giants in
creating the better, faster MRI. This is only one aspect of David’s work but
according to Emmanuel Candés, whom David supervised for his doctoral
thesis and who delivered the Gauss Prize Laudatio [8] on David Donoho’s
mathematical work and its impact, David is a master at exploiting sparsity
in order to increase efficiency. David’s research interests, on the Stanford
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website reads simply as “My theoretical research interests have focused on
the mathematics of statistical inference and on theoretical questions arising in
applying harmonic analysis to various applied problems. My applied research
interests have ranged from data visualization to various problems in scientific
signal processing, image processing, and inverse problems.”

Constantinos Daskalakis: The Nevanlinna Prize 2018 awardee

The following is the citation for the Rolf Nevanlinna Prize [9] ’The Rolf
Nevanlinna Prize is awarded once every 4 years at the International Congress
of Mathematicians, for outstanding contributions in Mathematical Aspects
of Information Sciences including: (i) All mathematical aspects of computer
science, including complexity theory, logic of programming languages, anal-
ysis of algorithms, cryptography, computer vision, pattern recognition, in-
formation processing and modelling of intelligence. (ii) Scientific computing
and numerical analysis. Computational aspects of optimization and control
theory. Computer algebra. The Rolf Nevanlinna Prize Committee is chosen
by the Executive Committee of the International Mathematical Union. A
candidate’s 40th birthday must not occur before January 1st of the year of
the Congress at which the Prize is awarded.’

Thirty seven year old Constantinos Daskalakis, a professor of computer
science at MIT was awarded this highest honour accorded to computer sci-
entists. An Indian connection is that Manindra Agarwal was part of the
Nevalinna Prize Committee for 2018. Daskalakis was given the Nevanlinna
prize for “transforming our understanding of the computational complexity
of fundamental problems in markets, auctions, equilibria and other economic
structures. His work provides both efficient algorithms and limits on what
can be performed efficiently in these domains” [10]. Constantinos works in
the interface of computer science and economics and is interested in using
mathematics to understand humans. He showed that while Nash equilib-
rium exists in complex games, it would be computationally impossible to
attain such equilibria, in the sense that it might take hundreds of years of
computational time to find that equilibria [11]. This is done by showing
that finding Nash equilibria is PPAD-complete. PPAD is a subclass of NP
(solution is quickly checkable, that is, in polynomial time), and stands for
‘Polynomial Parity Arguments on Directed graphs’. PPAD was introduced
by Daskalakis’s doctoral supervisor Christos H. Papadimitriou in 1994. While
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theoretical solutions exist for PPAD problems, finding them is computation-
ally intractable. The proof that Nash is PPAD and PPAD-complete involved
showing that Brouwer’s fixed point theorem was also PPAD-complete. For a
short but detailed account of Constantinos’ work see [12]. We end this part
with a few lines from the acknowledgements part of Constantinos’s thesis
[13]: “Christos once told me that I should think of my Ph.D. research as a
walk through a field of exotic flowers. “You should not focus on the finish
line, but enjoy the journey. And, in the end, you’ll have pollen from all sorts
of different flowers on your clothes.” I want to thank Christos for guiding
me through this journey and everyone else who contributed in making these
past four years a wonderful experience.”

Ali Nesin: The Leelavati Prize 2018 awardee

“The Leelavati Prize is intended to accord high recognition and great ap-
preciation of the International Mathematical Union and Infosys of outstand-
ing contributions for increasing public awareness of mathematics as an intel-
lectual discipline and the crucial role it plays in diverse human endeavors”
[14]. Started as a one-time award during the ICM 2010 which was held in Hy-
derabad, India, it was converted into a prize to be awarded once in four years
at the ICM. The Leelavati Prize recognises Ali’s “outstanding contributions
towards increasing public awareness of mathematics in Turkey, in particular
for his tireless work in creating the ’Mathematical Village’ as an exceptional,
peaceful place for education, research and the exploration of mathematics
for anyone” [15]. “Truth is stranger than fiction’ is an apt phrase when you
see the path that Ali has traversed in his life. Ali’s journey to developing
and creating the Mathematical Village began after his father, Aziz Nesin, a
renowned writer and socialist, died in 1995. Ali left the University of Cal-
ifornia, at Irvine, to return to Turkey to look after the foundation that his
father had begun. As Ali says, America did not need him but Turkey did.
He joined the Department of Mathematics at the Istanbul Bilgi University.
He felt that Turkey lacked access to elite, quality education in Mathematics.
Students coming to the University were ill-prepared to handle mathematics.
Worse, they seemed scared of looking foolish to clear their doubts. He began
summer schools to train students but that soon became difficult to sustain;
where would one be able to host students each year? Whenever Ali and his
Armenian friend, Sevan Nisanyan would get together they would dream of
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building a maths village where students could live life, learn and do mathe-
matics. Sevan was an architect and was to design the village. Work began
in 2007, in a village near Izmir, with very little money but many volunteers
willing to put in the labour required. However, the construction was deemed
illegal, and the police came to shut down the work and the summer school
that was happening. The group then moved to a nearby forest where they
were harassed again. At this point Nesin went public about the happenings
related to the maths village and huge support rolled in from the public in
terms of money and goodwill. The harassment was probably a result of Ali’s
father’s political beliefs. Ali and his group of volunteers removed the seals
placed by the police and began construction again, bringing to life Nisanyan’s
architectural design. In 2014, Nisanyan was jailed for illegal construction. He
managed to escape in 2017 and lives in Greece. Nisanyan was with Ali dur-
ing ICM 2018 in Rio, relating their adventures with pride at the award of
the prize for their Mathematical Village. The Nesin Mathematical Village,
nestled in a verdant hillside, in a remote part of Turkey attracts students
from high school onwards to enjoy mathematics in beautiful environs, with
no pressure of exams. The underlying principle is that it is more important
to understand the problem than to just solve it. See [16] for more on the
Nesin mathematical Village.
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8 An invitation to Ehrhart theory of lattice

points in polytopes by J K Verma

Indian Institute of Technology Bombay
email: jkv@math.iitb.ac.in

Abstract.2 We shall introduce Eugène Ehrhart’s Theory of lattice points
in polytopes through several examples and show its beautiful connections
with generating functions, Bernoulli polynomials, classical theorem of George
Pick, counting magic squares and Ehrhart-Macdonald Reciprocity Theorem.

Introduction. A point whose coordinates are integers is called a lattice
point. In these notes we discuss several examples of enumeration of lattice
points which point to the general theorems discovered by E. Ehrhart and
I. G. Macdonald. We will also explain how this theory throws light on the
problem of counting magic squares. Let us begin with counting lattice points
on a line segment.

O x

y

Q = (a/d,n/d)

2Q

3Q

4Q

5Q

dQ = (a,b) = A

2This is an expository article based on a lecture delivered to high school students and
teachers who assembled for the a function for Mathematics Olympiad students at HBCSE
in 2018. The material, taken from the references, is standard. No claim of originality is
made.
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Lemma 8.1. Let A = (a, b) be a lattice point and O denote the origin. Let
d = gcd(a, b) and Q = (a/d, b/d). Then the lattice points lying on the line
segment OA are exactly the points

Q, 2Q, . . . , dQ = (a, b).

Proof. The equation of the line L joining O and A is y = b
a
x. The point

Q = (a
d
, b
d
) and its multiplies Q, 2Q, . . . , dQ = (a, b) lie on OA. If (p, q) ∈ OA

is a lattice point then q = b
a
p. Thus a

d
q = b

d
p. But then p = na

d
for some n

and hence q = b
d
n. Hence (p, q) = n(a, b) Therefore the lattice points on OA

are O,Q, 2Q, 3Q, . . . , dQ = (a, b). Similarly the number of lattice points on
tOA is td+ 1. Notice that it is a linear function of t and a line segment is a
one-dimensional lattice polytope.

Theorem 8.2 (Georg Pick, 1899). Let P be a lattice polygon in the plane.
Let B = the number of lattice points on the boundary of P. Let I = the number
of lattice points in the interior of P. Then

Area (P ) = (I − 1) +
B

2
.

           1/2b+i−1=1/2*12+15−1=20

Figure 3: A lattice polygon

P1 P2
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Let P be the lattice polygon. The function area(P ) = 1
2
B+ I− 1 is additive

in nature. This means, if we divide P into two disjoint polygonal regions P1

and P2 so that P = P1 ∪ P2 then

area(P ) = area(P1) + area(P2) =
1

2
B1 + I1 − 1 +

1

2
B2 + I2 − 1

where Bi = (resp. Ii) number of lattice points on the boundary (resp. inte-
rior) of Pi for i = 1, 2. Let L be the number of lattice points on the common
boundary of P1 and P2. Then

I = I1 + I2 + L− 2

B = B1 +B2 − 2L+ 2

I − 1 +
1

2
B = I1 + I2 + L− 3 +

1

2
(B1 +B2 − 2L+ 2)

= (I1 +
1

2
B1 − 1) + (I2 +

1

2
B2 − 1)

Figure 4: Embedding a triangle into a rectangle

Definition 8.3. A Lattice triangle that has only vertices as its lattice points
is called a fundamental triangle.

We can now cover the area by fundamental lattice triangles. Hence
it is enough to derive the formula for these lattice triangles. We surround
these triangles by integral rectangles. So it is enough to prove the theorem
for rectangles and triangles whose sides are parallel to the axes and the
hypotenuse has only two lattice points.

Theorem 8.4. Let 4ABC be a lattice triangle that has no interior lattice
points and the vertices are the only lattice points on its boundary. Then

area(4ABC) =
1

2
.
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Theorem 8.5. Let P be a lattice polygon with area A and let B be the
number of lattice points on its boundary. Let LP (t) denote the number of
lattice points in tP. Then
(1) LP (t) = At2 + 1

2
Bt+ 1.

(2) Let P ◦ denote the interior of P. Then

LP ◦(t) = (−1)dimPLP (−t).

Proof. (1) Since area(P ) = I − 1 + 1
2
B, The number of lattice points in P is

I +B = area(P ) + 1− 1

2
B +B = 1 + area(P ) +

1

2
B.

Since area(tP ) = t2 area(P ) we get the formula.
(2) Since I = area(P )− 1

2
B + 1, we get

LP ◦(t) = t2 area(P )− 1

2
tB + 1 = LP (−t).

Theorem 8.6. Let P be a d-dimensional polytope in Rd. Then

LP (t) = vol(P )td + lower degree terms in t+ · · · .

Proof. There is a one-to-one correspondence between tP ∩ Zn and P ∩ 1
t
Zn

given by u ←→ 1
t
u. If u ∈ P ∩ 1

t
Zn, we draw hypercube with of side length

1/t with centre u. The number of such hypercubes is LP (t) and the volume of
each such hypercube is t−d. As t→∞, the total volume of these hypercubes
approaches the volume of P. Hence LP (t)t−d → vol(P ). Therefore

LP (t) = vol(P )td + . . . .

Lattice point enumerator of simplex, cube and

pyramid
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Example 8.7 (The lattice point enumerator of the unit cube). Con-
sider the unit cube C :

The lattice point enumerator of the unit cube is

LC(t) = (t+ 1)3 and LC◦(t) = (t− 1)3 = (−1)3LC(−t).

Example 8.8 (The lattice point enumerator of the standard sim-
plex). The standard simplex ∆ of dimension d is the convex hull of the
origin and the points e1, e2, . . . , ed where ej is the vector with 1 in the jth

position and 0 elsewhere. For d = 3, we have

∆ = {(x, y, z) | x+ y + z ≤ 1 and x, y, z ≥ 0}.

O
Y

Z

X

The The dilated standard simplex in dimension d is the set

t∆ = {(x1, x2, . . . , xd) | x1 + x2 + · · ·+ xd ≤ t and all xj ≥ 0}.

The lattice points in t∆ are integer solutions to the inequality m1 + m2 +
· · ·+md ≤ t. Therefore

L∆(t) =

(
t+ d

d

)
.
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The lattice points in the interior of ∆ are positive integers which are solutions
to the inequality m1 +m2 + · · ·+md < t. This happens to be

L∆◦(t) =

(
t− 1

d

)
= (−1)d

(
−t+ d

d

)
= (−1)dL∆(t).

Example 8.9 (The Lattice point enumerator of the Pyramid). Take
a (d− 1)-dimensional unit cube embedded into Rd and adjoin the vertex at
the point ed.

x2

x3

x1

The pyramid is also described as

{(x1, x2, . . . , xd) ∈ Rd | 0 ≤ x1, x2, . . . , xd−1 ≤ 1− xd ≤ 1}.

The lattice points in tP are

{(m1,m2, . . . ,md) ∈ Nd | mk +md ≤ t for all k = 1, 2, . . . , (d− 1)}.

Each mk for k = 1, 2, . . . , d− 1 has t−md + 1 independent choices. Hence

LP (t) =
t∑

md=0

(t−md + 1)d−1 =
t+1∑
k=1

kd−1.

To find the last sum, we recall the definition of the Bernoulli polynomials.
First recall the exponential function

ez = 1 + z +
z2

2!
+
z3

3!
+ · · ·+ zn

n!
+ . . . .
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The Bernoulli polynomials, named after Jacob Bernoulli (1654-1705) are
defined through the generating function

zexz

ez − 1
=
∞∑
k=0

Bk(x)
zk

k!
.

The first few Bernoulli polynomials are

B0(x) = 1,

B1(x) = x− 1

2
,

B2(x) = x2 − x+
1

6
,

B3(x) = x3 − 3

2
x2 +

1

2
x,

B4(x) = x4 − 2x3 + x2 − 1

30
,

B5(x) = x5 − 5

2
x4 +

5

3
x3 − 1

6
x,

The Bernoulli numbers are Bk = Bk(0) have the generating function

z

ez − 1
=
∞∑
k=0

Bk
zk

k!
.

Theorem 8.10. For d ≥ 1 and n ≥ 2, we have

n−1∑
k=0

kd−1 =
1

d
[Bd(n)−Bd(0)] .
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Proof. Calculate the generating function of the sequence 1
d!

[Bd(n)−Bd(0)] .

∑
d≥0

Bd(n)−Bd

d!
zd = z

enz − 1

ez − 1
= z

n−1∑
k=0

ekz

= z

n−1∑
k=0

∑
j≥0

(kz)j

j!

=
∑
j≥0

(
n−1∑
k=0

kj

)
zj+1

j!

=
∑
j≥1

(
n−1∑
k=0

kj−1

)
zj

(j − 1)!

Compare the co-efficients of zd on both the sides to get the formula.

Using the above formula we can write the lattice point enumerator of the
d-dimensional pyramid

LP (t) =
1

d
(Bd(t+ 2)−Bd) .

This is a polynomial of degree d in t whose leading coefficient is 1/d which
is the volume of the pyramid.

Let us now find the function LP ◦(t). The set of lattice points in the interior
of P is

{(m1,m2, . . . ,md) ∈ Nd | 0 < mk < t−md < t for all k = 1, 2, . . . , d− 1}.

Therefore

LP ◦(t) =
t−1∑
md=1

(t−md − 1)d−1 =
t−2∑
k=0

kd−1 =
1

d
(Bd(t− 1)−Bd).

The Bernoulli polynomials satisfy the relation Bd(1−x) = (−1)dBd(x). More-
over Bd = 0 for all odd d ≥ 3. Hence we get

LP (−t) =
1

d
(Bd(−t+ 2)−Bd) =

1

d
(Bd(1− (t− 1))−Bd)

= (−1)d
1

d
(Bd(t− 1)−Bd) = (−1)dLP ◦(t)
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Magic squares and theorems of Eugène Ehrhart

and I. G. Macdonald

The properties of LP (t) we observed for the cube, the standard simplex,
polygons in the plane and pyramids are special cases of the theorems of
Ehrhart and MacDonald. These are valid for polytopes.

Definition 8.11. A subset S of Rn is called convex if for any two points
p, q ∈ S, the line segment joining p and q is contained in S. The convex hull
of a finite set of points in Rn is called a polytope. A lattice point is a point
whose coordinates are integers. A polygon is called a lattice polygon if its
vertices are lattice points. For a positive integer t and a polytope P, the set

tP = {tu | u ∈ P}

is also a polytope.

Theorem 8.12 (E. Ehrhart). If P is a d-dimensional integral polytope then
LP (t) is a polynomial of degree d with rational coefficients.

Theorem 8.13 (Ehrhart-Macdonald Reciprocity). Suppose P is a ra-
tional convex polytope. Then

LP (−t) = (−1)dimPLP ◦(t).

Eugène Ehrhart (1906-2000) was a French mathematician who taught in
high schools in France. He received his Ph. D. degree from the university of
Strasbourg at the age of 60.

Counting magic squares

We shall now discuss the problem of counting magic squares. An n × n
magic square is an n× n matrix whose entries are nonnegative integers and
the sums of entries in every row and column is a given integer called the line
sum. We introduce the function

Hn(t) = the number of n× n magic squares with line sum t.

Observe that Hn(0) = 1, Hn(1) = n!, H2(t) = t+ 1

Theorem 8.14 (H. Anand, V. C. Dumir and H. Gupta, 1966).

∞∑
n=0

Hn(2)xn

(n!)2
=

ex/2√
1− x

.
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P. A. MacMahon found a formula in 1960 for H3(t).

H3(t) =

(
t+ 4

4

)
+

(
t+ 3

4

)
+

(
t+ 2

4

)
.

Guided by this evidence, Anand-Dumir-Gupta proposed the following con-
jecture.

Conjecture 8.15 (Anand-Dumir-Gupta, 1966). Hn(t) has the following
properties:
(1) The function Hn(t) is a polynomial in t of degree (n− 1)2.
(2) Hn(j) = 0 for j = −1,−2, . . . ,−(n− 1).
(3) Hn(−n− t) = (−1)n−1Hn(t).

Proof. (1) If M = (aij) is a magic square with line sum t then 0 ≤ aij ≤ t
and if aij is given for i, j = 1, 2, . . . , n − 1 then the remaining entries are
uniquely determined. Hence

Hn(t) ≤ (t+ 1)(n−1)2 , so degHn(t) ≤ (n− 1)2.

On the other hand if we choose any aij for i, j = 1, 2, . . . , n− 1 which satisfy

(n− 2)t

(n− 1)2
≤ aij ≤

t

(n− 1)2

then we can determine the other entries of M. Hence

Hn(t) ≥
(

t

n− 1
− (n− 2)t

(n− 1)2

)(n−1)2

=

(
t

(n− 1)2

)(n−1)2

.

Hence degHn(t) ≥ (n− 1)2. Therefore degHn(t) = (n− 1)2.

(2) Consider the set of n× n doubly stochastic matrices:

Bn =


 x11 . . . x1n

...
...

xn1 . . . xnn

 | xij ≥ 0, and
n∑
i=1

xij =
n∑
j=1

xij = 1


Bn is called the Birkhoff polytope. The n×n permutation matrices are magic
squares with line sum 1. Let these matrices be denoted by P1, P2, . . . , Pd
where d = n!. Then for any n1, n2, . . . , nd ∈ N,

n1P1 + n2P2 + · · ·+ ndPd
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is a magic square with line sum n1 + n2 + · · · + nd. G. D. Birkhoff and and
von-Neumann showed that the permutation matrices are the vertices of the
polytope Bn.Moreover its dimension is (n−1)2. Hence by Ehrhart’s Theorem,
it follows that

Hn(t) = LBn(t) and degHn(t) = (n− 1)2.

The interior of Bn consists of n×n doubly stochastic matrices with positive
entries. Let Jn denote the n×n matrix whose each entry is 1. Then we have a
one-to-one correspondence between lattice points in tBn and (t+n)B◦n given
by M ←→M+Jn. By the Ehrhart-Macdonald Reciprocity Theorem we have

Hn(t− n) = LB◦n(t) = (−1)(n−1)2LBn(−t) = (−1)(n−1)2Hn(−t).

Since LB◦n(t) = 0 for all t = 1, . . . , (n− 1), it follows that

Hn(t) = 0 for t = −1,−2, . . . ,−(n− 1).

This proves the second part of the ADG conjecture.

Corollary 8.16 (P. A. MacMahon, 1960). The number of 3 × 3 magic
squares is

H3(t) =

(
t+ 4

4

)
+

(
t+ 3

4

)
+

(
t+ 2

4

)
.

Proof. We know that H3(t) is a polynomial of degree 4. It is enough to know
its values at 4 different integers to determine its coefficients. Using the values

H3(1) = 6, H3(0) = H3(−3) = 1, H3(−1) = H3(−2) = 0,

one can easily prove MacMahon’s formula.
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9 The Higher Arithmetic by H. Davenport -

Book Review by Anupam Saikia

Department of Mathematics, IIT Guwahati
Email: a.saikia@iitg.ac.in

Harold Davenport (1907–1969) was an eminent British mathematician
who made outstanding contribution to geometry of numbers, Diophantine
approximation and the analytic theory of numbers. He wrote The Higher
Arithmetic as an introduction to number theory for a general audience. The
first edition of the book was published by Cambridge University Press in the
year 1952. The book has undergone several editions and reprints afterward
testifying to its enduring appeal. It introduces the readers to the theory of
numbers in an engaging expository manner. It does not require its readers
to have an extensive prior knowledge in mathematics. In fact it suffices to
have a good high-school training in mathematics to follow this book. At the
same time, the book throws light on topics of genuine mathematical signifi-
cance in a truly enjoyable way. It is an immensely readable, stimulating and
rewarding book for a wide variety of readers.
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The eight edition of The Higher Arithmetic contains 239 pages which have
been divided into eight chapters. The first chapter discusses elementary top-
ics such as factorization of integers and Euclid’s algorithm before alluding
to some of the open questions concerning distribution and representation of
primes. The second chapter deals with the notion of congruence and is of
elementary nature too. The third chapter talks about primitive roots and
quadratic residues providing a thorough treatment of quadratic reciprocity
law. The fourth chapter provides a comprehensive introduction to the the-
ory of continued fractions. The approximation properties of convergents have
been highlighted too. Starting with the basics, this chapter gradually builds
up the proof of Lagrange’s theorem that an irrational number of the form√
N has a continued fraction which is periodic after a certain stage. The fifth

chapter is an elegant discussion on representation of integers as sum of two,
three and four squares. Lagrange’s theorem that any positive integer can be
represented as sum of four squares is beautifully explained here. The sixth
chapter discusses quadratic forms, equivalent forms and representation of in-
tegers by them. It introduces the notion of class number as the cardinality
C(d) of equivalent classes of quadratic forms of a given discriminant d be-
fore touching on the unresolved conjecture of Gauss on existence of infinitely
many positive integers d such that C(d) = 1. The seventh chapter deals with
some of the very well-known Diophantine equations and also introduces the
basic notion of elliptic curves. The final chapter, a later addition to the orig-
inal book, discusses several factorization methods, primality testing, RSA
cryptography etc. At the end, there is a list of well-chosen exercises followed
by hints to their solutions.

The book is written very elegantly. It is not written in a rigid style of
statement of results to be followed by proofs and applications. The expo-
sition in the book is clear and precise. Without even being conscious of it,
the readers are likely to get drawn from the elementary notions into deeper
structures and questions. One can also gain a historical perspective about
the development of the theory.

In the reviewer’s opinion, any undergraduate who is interested in math-
ematics, and number theory in particular, will benefit immensely by going
through The Higher Arithmetic. But many undergraduate students of math-
ematics in India are seemingly unaware of this book. One of the reasons may
be that the book is not often mentioned in the list of reference books in the
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undergraduate curriculum of many universities in India. Hence the reviewer
feels that that the book should be brought to the attention of undergraduates
with a liking for number theory. Though it was not written as a textbook,
it can be followed as one too. The book has stood the test of time. It has
enthralled several generations of readers and will continue to do so. In the
reviewer’s opinion, this book is a must read for anyone interested in stepping
into the beautiful world of number theory.
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10 Quizzeria - Problems and Puzzles

Puzzles

In this part, we pose some puzzles whose answers are given on the last page.

• Who is being referred to here and what is his age?

Here lies ....., the wonder behold.
Through art algebraic, the stone tells how old:
’God gave him his boyhood one-sixth of his life,
One twelfth more as youth while whiskers grew rife;
And then yet one-seventh ere marriage begun;
In five years there came a bouncing new son.
Alas, the dear child of master and sage
after attaining half the measure of his father’s life chill fate took
him.
After consoling his fate by the science of numbers for four years,
he ended his life.’

• What do the following mean?

More toys hate graph (Hint: Already in Sulvasutras)
Is ISI price done? (Hint: What goes around comes around)
Steel right as rain (Hint: Never deviate from your path)
Stir in nascent pedal (Hint: Like ‘e’ but not like

√
2)

Tonic is army gain (Hint: Not real but false).

• While on convalescent leave from service in World War I, this mathemati-
cian killed his brother, his aunt and his uncle. He told the medical head
of the asylum where he was confined that the murders were a eugenic act,
in order to eliminate branches of his family affected by mental illness. This
person also had the habit of dating his letters with 1st April, regardless of
when they were written. Who was this?
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• This woman mathematician was born on 1st April and, using the pseudonym
M Le Blanc, managed to obtain lecture notes for courses from the newly or-
ganized Ecole Polytechnique in Paris. Who was this mathematician?

• Who said the following and who is being referred to?
“He is a man of good birth and excellent education, endowed by nature with
a phenomenal mathematical faculty. At the age of twenty-one, he wrote
a treatise upon the binomial theorem, which has had a European vogue.
On the strength of it he won the mathematical chair at one of our smaller
universities, and had, to all appearances, a most brilliant career before him.”

• Hermite was the major mathematical authority in France in the 1880’s.
He crusaded for the career of his three mathematical stars: Paul Appell (his
nephew), Emile Picard (his son-in-law) and a third person. Hermite wrote to
Mittag-Leffler that he considered this third person to be the most brilliant,
though he did not belong to his family, to the great displeasure of Madame
Hermite. Who is this third person?
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• Construct the following shapes (solutions in next issue)

using the 7 pieces below:
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• This puzzle is due to Henrey Dudeney. A goat is tethered to a vertex of
an equilateral triangle. It grazes as much area as covered by the sweep of
the rope and this happens to be 6π square metres. What is the length of the
rope?

• What is common to the following four mathematicians?
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• Arrange the following mathematicians in some natural pattern.
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• The mathematician on the left is Herglotz. The one on the right lost his
nose during World War I. Who is he?
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Solutions to the problems below are invited. The first six are easier and the
rest are in increasing order of difficulty. The solutions will appear in the next
issue.

Problems

Q 1. Solve ACID + BASE = SALT + H2O where each letter stands for a
distinct digit.

Q 2. An l × b rectangular painting needs to be covered by a square frame.
Find the side length of the smallest square frame required.

Q 3. Find the smallest positive integer N so that the sum
∑N

n=1
1

n!+(n+1)!
>

0.49995.

Q 4. In the multiplication table below, each digit from 0 to 9 appears exactly
twice. Determine all such tables.

∗ ∗ ∗
× ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Q 5. Determine the sum of the series 1
2

+ 1
3

+ 1
7

+ 1
43

+ 1
1807

+ · · · mentioned
on the cover page.

Q 6.
(a) Prove the identity

∑
n≥1

1
nn =

∫ 1

0
dx
xx

mentioned on the cover page.

(b) Prove the identity
∑

n≥1
(−1)n−1

nn =
∫ 1

0
xxdx mentioned on the cover page.

Q 7. Let f be a function from R to itself. Suppose that for each a ∈ R,
the number of elements in {t ∈ R : f(t) = a} is 0 or 2. Prove that f has
infinitely many points of discontinuity.

Q 8. A deck of 52 cards is given. There are four suites each having cards
numbered 1, 2, · · · , 13. The audience chooses any five cards with distinct
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numbers written on them. The assistant of the magician comes by, looks at
the five cards and turns exactly one of them face down and arranges all five
cards in some order. Then the magician enters and with an agreement made
beforehand with the assistant, she has to determine the face down card (both
suite and number). Explain how the trick can be completed.

Q 9. Find all polynomials p which satisfy the property that a value p(a) is
rational if and only if a is rational.

Q 10. Let G be a finite group of order n. For any subset S of G, put

Sk = {s1 · · · sk : si ∈ S}

for each k ≥ 1. Prove that Sn is always a subgroup.

Q 11. Let us mark off points on the unit circle, dividing the circumference
into n equal parts where n > 2. Fix one of these points and, moving clock-
wise along the circumference, join this point to the k-th point for each k
coprime to n. What is the products of the lengths of these chords?

Q 12. Wieferich observed in 1909 that if p is a prime for which Fermat’s
equation xp + yp = zp has a solution in positive integers which are not mul-
tiples of p, then 2p−1 ≡ 1 mod p2. Such primes are called Wieferich primes.
Prove that a prime which is Mersenne or Fermat cannot be a Wieferich prime.
Here Mersenne primes are those of the form 2n − 1 and Fermat primes are
those of the form 2m + 1.

Q 13. Prove that there is no function f : R → R which is differentiable at
every irrational number and discontinuous at every rational number.

Q 14. Find the significance of the number 49598666989151226098104244512918.

Q 15. Determine whether the series
∑

n
1

n3 sin2(n)
converges or not.
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11 Math Humour, Cross-Swords

• Math Humour

When Galois rebelled against the establishment, he was ineffective in solving
the problem; why?
Because the problem was not solvable by radicals.

Why is the usual formula for the area of a circle wrong?
Who says pie are square; they are round.

Ancient Roman in a cloth store: “how come XL is larger than L?”

There are three types of people in the world: those who can count and those
who can’t.

(Due to Michael Filaseta) 82.1032 per cent of statistics are made up on the
spot.

(From Hendrik Lenstra’s classes):
“Who doesn’t know what a local ring is? Don’t be shy... [Student raises his
hand] Learn it!”
“So h(x) must be the inverse of zero. This is a very big problem for x, which
decides to solve this problem by ceasing to exist.”
“That would be an interesting problem to think about. Of course, the first
thing to do is to turn the library upside down and see if something falls out.”
“Adèles. You put the accent there if you want people to know you speak
French.”
“The problem with wrong proofs to correct statements is that it is hard to
give a counterexample.”
“The art of doing mathematics is forgetting about the superfluous informa-
tion.”
“Recreational Number Theory is that branch of Number Theory which is too
difficult for serious study.”
“I’ll show you how to discover all of this by yourself, assuming that you are
Fermat.”
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• Cross-Sword

1 2 ♠ 3 4 5 6
♠ ♠ ♠ ♠ ♠ 7
♠ ♠ 8 9 10 ♠ ♠

11 12 ♠ 13 ♠ 14 15
♠ 16 17 ♠ ♠ ♠ 18

♠ ♠ 19 ♠ ♠ ♠ ♠
20 ♠ 21 22 ♠ 23

♠ ♠ 24 25 ♠ ♠
26 27 ♠ ♠ ♠ ♠ 28
29 ♠ 30

Across

1. Nasty but average (4).
3. Euler’s constantly talking Greek (5).
7. Cures a Ph.D? (2).
8. It’s complex without an iota of doubt (4).
11. The least upper bound may not be attained but briefly (3).
13. If not General Motors, it is

√
ab (2).

14. And so on? (3).
16. a, a+ b, a+ 2b, · · · (2).
18. Cartoon character makes a point (3).
19. A couple of egotists could make a cricket team (2).
20. Follows from the theorem - at least in the beginning (3).
21. Romans counting in Greek? (2).
23. Any trigonometric function under the sun gets this (3).
24. Keep thinking twice to be level (4).
26. Greek novel? (2).
28. 49 is almost ill (2).
30. A function that is little more than a sin (4).

Down

1. The pet of computer enthusiasts (5).
2. This follows neither (3).
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4. Or nothing? (3).
5. Could be 7 across (2).
6. Disturbed clear agent has four sides (1,9).
9. For instance (2).
10. This is at least as large as 13 across (2).
12. One of these could be two of these in Hindi (4).
14. A change in diet before publication (4).
15. Following 28 down could give us a product (2).
17. Pig without tail goes around in circles (2).
20. A function drawn without lifting the pen briefly (4).
21. Sum of digits of all its divisors is equal to it. (2).
22. That is to say (2).
24. Shortened member in a group (3).
25. Count them as negative answers? (3).
27. Unitary operators on a Hilbert space simply call for an exclamation (2).
28. See 15 down (2).
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12 Are these beautiful? by Kanakku Puly

Bures Sur Yvette

G.H.Hardy says, “The mathematician’s patterns, like the painter’s or the
poet’s, must be beautiful.... Beauty is the first test: there is no permanent
place in the world for ugly mathematics.” Von Neumann, Poincare as well
as Weyl have expressed similar sentiments. Weyl goes a step further when
he says that although in mathematics he looks for truth and beauty, when
he has to make a choice, he may choose the latter! We discuss a few of the
most beautiful results from mathematics. Also, in some cases, rather than
the result itself, it is a particular proof which one thinks of as beautiful.
One further point to note is that not all these facts have the same depth.
Although the perception of beauty in a mathematical result is rather subjec-
tive, irrespective of whether a result is easy or difficult to prove, it appears
that what is considered by most people to be beautiful mathematics has an
element of surprise.

1. The number of primes is infinite.
This fact itself is not as captivating as its famous immortal proof due to
Euclid is. This single proof embodies in it the subtlety of the fundamental
theorem of arithmetic. Although understandable to the proverbial layman,
I have nevertheless not met anyone who has independently discovered this
proof. Notice that 2.3.5.7.11.13 = 59.509. Indeed, interestingly, in spite of
enormous advances in prime number theory, it is still unknown whether the
sequence 2.3.5 · · · pn+1 (where pn is the n-th prime) contains infinitely many
primes.

2.
√

2 is irrational.
This is perhaps the first time that a student encounters a proof (using the fun-
damental theorem of arithmetic) by contradiction. In the author’s personal
experience, students find the following proof using the method of descent
much more surprising.
Suppose

√
2 is rational, say a/b with a, b > 0. Suppose b is the least possible

natural number for which b
√

2 is an integer. But, then b′ = b(
√

2 − 1) is a
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natural number such that b′
√

2 = 2b − b
√

2 ∈ Z. Clearly, b′ < b which con-
tradicts the choice of b. By descent, this proves that

√
2 cannot be rational.

Note that what we have proved is that

√
2 =

a

b
=

2b− a
a− b

.

The above proof by descent has the advantage that it easily generalises to
prove that a rational number which is a root of a monic integral polyno-
mial must be an integer. The above proof of irrationality of

√
2 can also be

depicted by means of a diagram (try drawing one!).

3. (Euler :) podd(n) = pdistinct(n) for all n.
In other words, the number of partitions of n into odd numbers is also the
number of partitions of n into distinct numbers. This must rank among the
top five favourites of all time in many lists!
This is an instance of a fact which is absolutely captivating on the face of it
whereas the proof has no great surprises. For |x| < 1, note that∏

n≥1

(1− xn)−1 =
∏
n≥1

(1 + xn + x2n + · · · ).

The infinite product can also be shown to be convergent when |x| < 1. A
typical term of the expanded product is of the form xn with n = r1n1 +
r2n2 + · · ·+ rknk for some n1 < n2 < · · · < nk and r1, · · · , rk ∈ N. Thus, the
coefficient of xn is the number p(n) of partitions of n. Since a power series
determines its coefficients, one may compare coefficients of like powers of x
and obtain ∏

n≥1

(1− xn)−1 =
∑
n≥0

p(n)xn.

Now, similarly ∏
n≥1

(1− x2n−1)−1 =
∑
n≥0

podd(n)xn.

Consider the infinite product
∏

n≥1(1 + xn). Once again, it is evident from
expanding this product that a power xn occurs as many times as n can be
written as a sum n1 + n2 + · · ·+ nk of distinct natural numbers for some k.
In other words, ∏

n≥1

(1 + xn) = pdistinct(n)xn.
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Now, ∏
n≥1

(1 + xn) =

∏
n≥1(1− x2n)∏
n≥1(1− xn)

=
1∏

n≥1(1− x2n−1)
.

We mention another identity; this can be proved in a geometric manner.
The number of partitions of n into at most m parts equals the number of
partitions of n into parts in which each part is at most m.
This can be proved by actually producing a bijection between the two sets
that one is counting. For a partition n1 +n2 + · · ·+nr = n where n1 ≥ n2 ≥
· · · ≥ nr, draw an array consisting of dots with n1 dots in the first row, n2

dots in the second row (centred to the left) etc. as in figure 1. Associate
to this array, the ‘conjugate array’ obtained by counting columnwise. For
instance, 8 = 4 + 2 + 2 gives the array in figure 1 and its conjugate array
given in figure 2 corresponds to the partition 8 = 3 + 3 + 1 + 1.
This operation of conjugation produces the bijection we are looking for.
The theory of partitions is a subject to which Ramanujan made many impor-
tant contributions. Apart from their beauty and elegance, partition identities
are intimately related to many subjects like statistical mechanics, represen-
tation theory, modular forms etc.

4.
∑∞

n=1
1
n2 = π2

6
.

Whoever encounters this for the first time is invariably left with a sense of
incredulity - how can a sum involving squares of natural numbers produce
a number like π ?! Test this out by telling a friend who studies, let us say,
chemistry or biology. However, not only is this true, it was already ‘proved’
by Euler. His ‘proof’ of this, in terms of today’s rigour, is not satisfactory
but can be made completely rigorous. In fact, the sum

∑∞
n=1

1
n2k for any even

powers 2k, is a rational multiple of π2k where this rational number involves
the so-called Bernoulli numbers. One can prove the above result in various
ways but let us indicate what Euler himself did and take the possibility of
its rigorisation for granted.
Think of the right hand side of Sin(x)

x
= 1− x2/3! + x4/5!− · · · · · · as though

it were a polynomial. Its zeroes are ±nπ for natural numbers n. Now, if
f(x) = a0 + a1x + · · · + anx

n is a polynomial whose roots are αi 6= 0, i =
1, 2, · · · , n, then the polynomial xnf(1/x) = an + an−1x + · · · + a0 has its
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roots as 1/αi. Therefore, the sum

n∑
i=1

1

α2
i

= (
n∑
i=1

1

αi
)2 − 2

∑
i<j

1

αiαj
= (−a1/a0)2 − 2a2/a0.

Use this idea for the above expression for Sin(x)/x, noting that a0 = 1, a1 =
0, a2 = −1/3!. We have∑

n6=0

1

n2π2
= 2

∑
n≥1

1

n2π2
=

2

3!
.

Below, we have another such sum with π occurring:

1

2× 3× 4
− 1

4× 5× 6
+

1

6× 7× 8
− · · · · · · = π − 3

4
.

Although it may not be as surprising now as before, it is not immediately
clear how such a thing could be proved. One can prove this by expanding as
partial fractions as follows.∑

k≥2

(−1)k

(2k − 2)(2k − 1)2k
=
∑
k≥2

{ (−1)k

2(2k − 2)
+

(−1)k−1

2k − 1
+

(−1)k

4k
}

=
1

4
+
∑
k≥2

(−1)k−1

2k − 1
=

1

4
+ tan−1(1)− 1 =

π − 3

4
.

5. eiπ = −1.
This beautiful formula figures at the top in most people’s lists. In modern
mathematics, it is the number e (or rather, the function ex) which is central.
One encounters π very early in life as a result of which often a beginner feels
closer to π than to e. A famous theorem of Gelfond & Schneider asserts that
αβ is not algebraic when α 6= 0, 1 is algebraic and β is algebraic and irrational.
Here, by a complex number being algebraic, one means that it is the root
of some nonzero polynomial equation with rational number coefficients. The
theorem of Gelfond & Schneider shows on using the above formula (a little
cleverly) that eπ is not algebraic - one of Hilbert’s famous problems. It
is interesting to note that Gelfond & Schneider’s theorem solved Hilbert’s
problem during his lifetime and that Hilbert had predicted initially that it
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would take many generations before it would be proved and that Fermat’s
last theorem and the Riemann hypothesis would be solved before that!

6. There is no equilateral triangle with all vertices to be lattice points.
Since the line joining two lattice points has rational slope, it follows that for
any triangle with vertices as lattice points, tan θ for any of the three angles
is rational. For an equilateral triangle tan 60 =

√
3 which is irrational.

7. At any party, there are at least two different people with the same number
of friends.
This is a very attractive application of the pigeon-hole principle. Here is a
way to prove it. Write an n × n array with rows and columns indexed by
the n people P1, · · · , Pn in the party. Put the (i, j)-th entry to be 1 or 0
according as whether Pi and Pj are friends or not. Let us assume that each
person is friendly with herself (!) so that all the diagonal entries are 1’s.
Then, the number of friends of Pi is the row sum ri of the i-th row. Note
that 1 ≤ ri ≤ n for all i. If r1, · · · , rn were all distinct, then r1, · · · , rn would
just be the numbers 1, · · · , n in some order. But then if ri = 1 and rj = n,
this means that Pi has no friends other than herself while Pj is friendly to
everybody else. This apparent contradiction proves that r1, · · · , rn cannot
all be distinct.

8. If each point of the plane is coloured with one of three colours - red, yellow
and blue - then there must exist two different points x, y at unit distance which
have the same colour.
The trick is to tile the whole plane by equilateral triangles of unit sides.
In any such equilateral triangle, the vertices have to be coloured differently
for, otherwise, we are through. But then, we have that any sequence of 3
consecutive edges gives rise to the extremes having the same colour. Thus,
if we have A,B,C with AB and AC having length 3 and BC having length 1,
then A and B have the same colour and so do A and C. Thus, B and C have
the same colour!

9. The Cayley-Hamilton theorem : Every square matrix A is a root of its
‘characteristic’ polynomial p(t) = det(A− tI).
This lovely and surprising result is often thought by students to be a tautol-
ogy (what is wrong with the proof p(A) = det(A−A) = 0?!) A nice proof is
the “engineers’ style” method of “assuming what is to be proved and work-
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ing backwards” to obtain a proof. In this instance, it can be carried out as
follows. Write

p(t) = c0 + c1t+ · · ·+ cnt
n = det(A− tI).

Now, for each t ∈ C, the adjoint of the matrix A− tI can be written as

Adj(A− tI) = A0 + A1t+ · · ·+ An−1t
n−1

where Ai are certain matrices which are independent of t. Now, the equality

(A− tI)Adj(A− tI) = p(t)I

for each t ∈ C implies
AA0 = c0I, AA1 − A0 = c1I, · · · , AAn−1 − An−2 = cn−1I,−An−1 = cnI.
Thus, ‘working backwards’, one may determine Ai’s as polynomial expres-
sions in A and thus the Ai’s commute with A.
Thus, p(A) = c0I+c1A+ · · ·+cnA

n = AA0 +(AA1−A0)A+(AA2−A1)A2 +
· · ·+ (AAn−1 − An−2)An−1 − An−1A

n = 0, the zero matrix.
The reader is invited to check that this proof yields the more general result
that if AB = BA, then p(B) = (B − A)C for some matrix C.
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13 Some elementary problems posed by Ra-

manujan by B Sury

Stat-Math Unit
Indian Statistical Institute

Bangalore, India

Here are some elementary problems from among the 58 problems posed by
Ramanujan in the Journal of the Indian Mathematical Society between the
years 1911 and 1919. I have chosen only those few which require very little
background knowledge in order to understand the statements of the results.
We mention hints for solving some of these problems and leave it to the
reader to try her acumen to complete the solutions.

Q 1. Solve the equation xy = yx in positive rational numbers.
The solution by J.C.Swaminarayan and R.Vythynathaswamy is very simple
and goes as follows. Put x/y = t. Then yt = x = yt so that yt−1 = t. From
this, it is not difficult to check that t − 1 = 1

n
for some n (check !) Thus,

y = (1 + 1/n)n and x = (1 + 1/n)n+1 for any natural number n, are all
possible positive rational solutions. Note that {x, y} = {2, 4} are the only
solutions in natural numbers. Actually, with some background in calculus
one can solve the above problem by looking at the growth of the function
x

log x
.

Q 2. Find the values of √
1 + 2

√
1 + 3

√
1 + · · ·,√

6 + 2

√
7 + 3

√
8 + · · ·.

Of course, it is not a trivial matter to analyse and justify that such an infinite
sequence of ‘nested radicals’ gives a meaningful number. However, it is easy
to find the values if one accepts that the expressions are meaningful and
goes ahead. It is a pleasant exercise to prove that the values are 3 and 4
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respectively! In fact, prove that√
x+ 2

√
x+ 1 + 3

√
x+ 2 + · · · = 1 +

√
x+ 3.

Ramanujan also proved:
If m,n are arbitrary, then√

m 3
√

4m− 8n+ n 3
√

4m+ n =

±1

3
( 3
√

(4m+ n)2 + 3
√

4m− 8n)(4m+ n)− 3
√

2(m− 2n)2).

Actually, this is easy to verify simply by squaring both sides ! However, that
does not indicate how this formula was arrived at or whether there are more
general formulae. In fact, it turns out that Ramanujan was absolutely on the
dot here; the following result shows Ramanujan’s result cannot be bettered:
Let α, β ∈ Q∗ such that α/β is not a perfect cube in Q. Then,

√
3
√
α + 3
√
β

can be denested if and only if there are integers m,n such that α
β

= (4m−8n)m3

(4m+n)n3 .
The proof requires Kummer theory.

Q 3. Show that

3
√
cos2π/7 + 3

√
cos4π/7 + 3

√
cos8π/7 =

3

√
(5− 3

√
7)/2.

Anyone who has worked with number-theoretic and algebraic identities knows
that, once written down, many identities are rather easy to verify but one
often misses the creative insight which led to the discovery of the identity
in the first place. For example, the above identity can be verified simply by
taking 3rd powers and applying the multinomial theorem.

Q 4. Show that

(3{(a3 + b3)1/3 − a}{(a3 + b3)1/3 − b})1/3 = (a+ b)2/3 − (a2 − ab+ b2)1/3.

This problem was solved very elegantly by the fivesome - K.K.Ranganatha
Aiyar, R.D.Karve, G.A.Kamtekar, L.N.Datta and L.N.Subramanyam. Here
is the gist of their argument.
Consider the identity

(a+ b− c)3 = (a+ b)3 − c3 − 3c(a+ b)2 + 3c2(a+ b).
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Taking c3 = a3 +b3, the right hand side simply becomes 3(a+b)(c−a)(c−b).
The asserted identity follows on dividing by a+ b and taking cube roots.

Q 5. If

sin(x+ y) = 2sin((x− y)/2) , sin(y + z) = 2sin((y − z)/2),

prove that

(sin(x)cos(z)/2)1/4 + (cos(x)sin(z)/2)1/4 = (sin(2y))1/12.

It is astonishing to note that it took more than 10 years before the first
solution was submitted. Even the latest solutions available are rather lengthy,
and it is a challenge to find a shorter solution.

Q 6. 2n − 7 is a perfect square for the values 3, 4, 5, 7, 15 of n. Find other
possible values.
This is now known as the Ramanujan-Nagell equation. Interestingly, W.Ljunggren
posed this same problem in 1943 unaware that Ramanujan had already done
so; Nagell solved it in 1946. It turns out that the above values of n are the
only ones for which 2n − 7 is a square. Now there are many proofs known of
this fact but all of them involve non-elementary results in mathematics.
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14 Answers to Puzzles

• The poem is about Diophantus’s life. This puzzle implies that Diophantus’s
age x = 84 is a solution of the equation

x =
x

6
+

x

12
+
x

7
+ 5 +

x

2
+ 4.

• These are anagrams of:
Pythagoras theorem, Sine is periodic, Lines are straight, Pi is transcendental,
C is not imaginary.

• Andre Bloch, who contributed to complex analysis from prison.

• Sophie Germain, who revealed her identity to Gauss later.

• Sherlock Holmes in ‘The Final Problem’ referring to his archrival Professor
Moriarty.

• Henri Poincaré.
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• The solution to the goat problem is obtained by viewing the equilateral
triangle as one of the six that form the hexagon in the figure below. Then,
the area covered is one-sixth of the area of the circle as in this figure. Thus,
the radius is

√
6× 6π/π = 6 metres.

• Paul Epstein, Bernhard Riemann, Andre Weil and Helmut Hasse have some
zeta functions named after them.

• Hermann Schubert, Alan Turing, Paul Epstein, and Helmut Hasse were
born on 22/5, 23/6, 24/7, 25/8 respectively.

•With Gustav Herglotz is Gaston Julia who lost his nose during world war I.

Photos courtesy:

https : //opc.mfo.de/detail?photoid = 4448, CCBY − SA2.0de
https : //commons.wikimedia.org/w/index.php?curid = 6079745
https : //opc.mfo.de/detail?photoID = 1570, CCBY − SA2.0de
https : //commons.wikimedia.org/w/index.php?curid = 3900025
http : //apprendre−math.info/anglais/historyDetail.htm?id = Epstein
http : //www−gap.dcs.st−and.ac.uk/ history/Biographies/Schubert.html
http : //www.turingarchive.org/viewer/?id = 521&title = 4
https : //opc.mfo.de/detail?photoid = 1680

92



Answer to Cross-Sword

M E A N ♠ G A M M A
O ♠ ♠ O ♠ ♠ L ♠ D R
U ♠ ♠ R E A L ♠ ♠ E
S U P ♠ G M ♠ E T C
E ♠ A P ♠ ♠ ♠ D O T
♠ ♠ I I ♠ ♠ ♠ I ♠ A
C O R ♠ X I ♠ T A N
O ♠ ♠ E V E N ♠ ♠ G
N U ♠ L ♠ ♠ O ♠ I L
T H E T A ♠ S I N E
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15 Objectives of Blackboard

The aim of Blackboard, the Bulletin of MTA (I) is to promote interest in
mathematics at various levels and to facilitate teachers in providing a well-
rounded mathematical education to their students, in curricular as well as
extra-curricular aspects.. The Bulletin will also serve as an interface between
MTA (I) and the broad mathematical community.

As a community of educators, we are also interested in learning from ex-
periences of teachers. To be able to be effective in our practices of doing
mathematics, we need to understand how students think and engage in these
practices. We welcome write-ups from teachers that provide this window
into student thinking from their actual teaching experiences. These glimpses
will form a foundation of what we can offer as a useful resource for issues of
teaching and learning of mathematics.

While there are other publications with similar objectives, Blackboard is
envisaged to be different in terms of coverage of material and diverse target
readership - high school and college teachers to young researchers. We plan
to publish regularly on the following topics and themes:
• A variety of teaching initiatives.
• Articles connecting different stages of mathematics education and mathe-
matical research.
• Expository articles on recent developments in mathematics.
• Classroom Practices.
• Issues of mathematics teaching and learning from actual teaching experi-
ences.
• Work of Indian mathematicians.
• History of Mathematics.
• Problem Corner with puzzles, crosswords, cartoons, etc.
• Book Reviews.
• Information about useful online resources.
• Announcements of workshops, positions and other news. items.

Initially, Blackboard will be brought out as an e-publication.
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