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GOALS OF MATHEMATICS EDUCATION

What are the goals of mathematics education?

Simply stated, there is one main goal – Mathematisation of the child’s thought processes –

NCF 2005
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Mathematics is, after all, a human activity……….

The pupil himself should reinvent mathematics. During this process, the learner is engaged 

in an activity where experience is described, organized and interpreted by mathematical 

means. This activity is mathematising.

Hans Freudenthal



Seymour Papert vividly talked about children using 

computers as instruments for learning and for 

enhancing creativity, innovation, and "concretizing" 

computational thinking.

SEYMOUR PAPERT
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The essence of computational thinking is what we can do while interacting with 

computers, as extensions of our mind, to create and discover (Knuth, 1980).



From reports and curriculum documents 

According to the ACM Pathways Report 2013

“By 2020, every one of two jobs in STEM fields will be in computing”

The NGSS (Next Generation Science Standards) 

� Emphasizes the need to infuse computational thinking in high school math.

� Highlights the growing importance of computation and digital technologies across scientific 

disciplines.
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disciplines.

The Common Core guidelines

“students should be able to use technological tools to explore and deepen their understanding of 

concepts”

The Pedagogical challenge

� How do we realise computational thinking in the mathematics classroom?



What is computational thinking…..

Computational thinking skills (Weintrop et.al, 2016)

� The ability to deal with open ended problems

� Persistence and confidence in dealing with complexity

� Representing ideas in computationally meaningful ways

� Breaking down problems into simpler ones
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� Breaking down problems into simpler ones

� Creating abstractions for aspects of the problem at hand

� Assessing strengths and weaknesses of a representation

� Generating algorithmic solutions

Motivation for CT in math classroom:

The reciprocal relationship – using computation to enrich mathematics learning through 

technology and using mathematical contexts to enrich CT.



RECOMMENDATIONS OF NCF 2005

• Activity oriented

• Accessible to all and affordable by all

• Emphasis on relevance of mathematics

School Mathematics

• Formal problem solving, Estimation and approximation, Use 

of patterns

• Visualization, Reasoning and proof

Shift from content to 
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• Visualization, Reasoning and proof

• Making connections, Mathematical communication

• Explorations and investigatory problems involving CT have 

great relevance here. 

Shift from content to 

processes

Technology

• Taking over computations

• Reducing cognitive load

• Opportunities to explore concepts numerically, 

graphically, symbolically 



TECHNOLOGY FOR MATHEMATICS 
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Learning theories support this view of learning

Vygotsky’s Sociocultural theory

� learners should be provided with socially rich environments in which they can explore 

knowledge domains with their fellow students, teachers and outside experts

Piaget’s theory of constructivism

8

Piaget’s theory of constructivism

� Learning is constructed, not transmitted, and that learners play an active role in the learning 

process. Technology can be a great enabler in this regard.



Cognitive aspects of technology

Technology helps to develop our thinking.

� Amplifier – restructures our thinking and increases the range of activities that we can 

perform in a limited time. Gives us access to higher level concepts.

� Reorganiser – Emphasises processes such as search for patterns, problem solving etc and 
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� Reorganiser – Emphasises processes such as search for patterns, problem solving etc and 

enables learning through exploration and discovery - a sequence different from the traditional 

ones.



Raberdel and Verillion

� Tool mediated mathematical thinking

�The process through which students (and teachers) develop their capacity to make use of a tool for 

mathematical purposes.

Theory of Instrumental Genesis
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� Users develop mental schemes which transform the tool from being a material artifact to a 

functional instrument.

� Instrumentation: The user turns a tool into an instrument  for performing a specific task by 

developing a scheme.

� Instrumentalization: Specific functionalities are attributed by the user to the tool (not necessarily 

intended by the designer of the tool)



TECHNOLOGY : A CATALYST FOR REALIZING THE GOALS OF 

MATHEMATICS EDUCATION 

REACH

MATHEMATIZATION

(MATH MODELING)

SUPPORTS 

CONTRUCTIVIST 

APPROACH

SCAFFOLDING
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TECHNOLOGY

ACCESS HIGHER 

LEVEL PROCESSES

MULTIREPRESENTATIONAL 

UNDERSTANDING OF 

CONCEPTS 

LIGHTENS 

TECHNICAL WORK & 

REDUCES COGNITIVE 

LOAD



Projects – Examples from the math classroom 

Project topicProject topicProject topicProject topic Mathematical Mathematical Mathematical Mathematical 

conceptsconceptsconceptsconcepts

InvestigationsInvestigationsInvestigationsInvestigations

Applications to 

Genetics

Matrices and 

probability

Predict the genotype distribution of a plant 

population after any number of generations.

Cryptography

(RSA Algorithm, 

Hill Cipher)

Number theory, Matrices Modifying the method so that cracking the 

algorithm becomes more difficult, wrote 

programs in C++

Fractals Geometric Sequences, Self-similarity, fractional 

dimension,

Creating new fractal curves and patterns and analysing them using 

GS and spreadsheets.
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Geometric Sequences, Self-similarity, fractional 

dimension,

Iteration and recursion

Creating new fractal curves and patterns and analysing them using 

GS and spreadsheets.

Newton’s method 

and fractal patterns

Newton’s method (elementary 

calculus), convergence of 

sequences

Exploring the nth roots of unity, plotting the 

Newton’s basins of attraction and observing 

fractal patterns

Queuing models Differential equations, birth-death processes Analysing queuing models at a petrol pump 

and fast food counter and suggesting methods to optimise profits a

nd reduce waiting time.

Fourier series and applicatio

ns

Understanding Gibbs 

phenomenon

To reduce the impact of Gibbs phenomenon

Cellular Automata Combinatorics, algorithms Classifying the 256 ECA, encryption, 

creating new CA



Autosomal inheritance

� the inherited trait under consideration (say petal color in a certain plant) is assumed to be governed 

by a set of two genes, denoted by AAAA (red color) and a a a a (white color)

� Three genotypes: AAAAAAAA (red), AaAaAaAa (pink), aaaaaaaa (white)

APPLICATION OF MATRICES TO GENETICS
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Three genotypes: AAAAAAAA (red), AaAaAaAa (pink), aaaaaaaa (white)

� Students were asked to list all possible parent pairings along with the probabilities of the resulting 

offspring combinations.

Parent pairings

Offspring

outcomes

AA - AA AA - Aa AA - aa Aa - Aa Aa - aa aa-aa

AA 1 1/2 0 1/4 0 0

Aa 0 1/2 1 1/2 1/2 0

aa 0 0 0 1/4 1/2 1



Investigations

Explore the example of autosomal  inheritance to create a model which could predict 

the genotype distribution of a plant population after any number of generations 

under specific breeding programs.

APPLICATION OF MATRICES TO GENETICS
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• For example, what happens when all plants are fertilised with plants of genotype 

AA (red flowers)

• with plants of genotype Aa (pink flowers)



The modeling process

an, bn and cn: fraction of plants of genotypes AAAAAAAA, AaAaAaAa and aaaaaaaa in the n th generation,

If all plants are fertilised with AA1+ + = ∀n n na b c n

1
= +a a b b =

1
b + c 0=c

APPLICATION OF MATRICES TO GENETICS
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the genotype distribution of a plant population after any number of generations, given 

the initial distribution.



Computations using the CASIO cg 50 GDC or Excel

Students calculated the steady state distributions of the three genotypes under specific 

breeding situations such as

� If each plant was fertilised with type Aa.

� If each plant was fertilised with a plant of its own genotype. 

APPLICATION OF MATRICES TO GENETICS
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� If each plant was fertilised with a plant of its own genotype. 

� If alternate generations of plants were fertilised with genotypes AA and Aa respectively. 



Case 1: All plants fertilised with AA. In steady state all plants will 

have red flowers.

Case 2: All plants fertilized with Aa,

EXPLORATIONS WITH MATHEMATICA
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Case 2: All plants fertilized with Aa,

25% - AA, 50% - Aa, 25% - aa

Case 3: All plants fertilized with aaaaaaaa

50% - aa, 50% - AA



All Plants Fertilized With Initial Distribution Steady State

AA Aa aa

AA [0 .5 .5 ] 100 0 0

[.3 .3 .4 ] 100 0 0

STUDENTS’ EXPLORATIONS WITH MATHEMATICA
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[.3 .3 .4 ] 100 0 0

Aa [0 .5 .5 ] 25 50 25

[.3 .3 .4 ] 25 50 25

aa [0 .5 .5 ] 0 0 100

[.3 .3 .4 ] 0 0 100

Own Genotype [.5 0 .5 ] 50 0 50

[.5 .5 0 ] 75 0 25

[0 .5 .5 ] 25 0 75



NEWTON’S METHOD AND FRACTAL PATTERNS – Project by students 

of grade 12

Newton’s method for approximating the zeros of any polynomial is 

xn+1 = xn −
f (xn )

f '(xn )
Define Newton’s function
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Define Newton’s function

The iterates

in general converge to a zero of f(z).

N(z) = z −
f (z)

f '(z)

N
n
(z0 )



Newton’s iterates of f(z) = z2 + 1 converge to the roots i and –i.  Mathematica 

was used to plot the basins of attraction B(i) and B(-i). These are the half planes 

created by the line L which is the perpendicular bisector of the line segment 

joining the zeros i and –i in the complex plane.

NEWTON’S METHOD AND FRACTAL PATTERNS
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For f(z) = z3 - 1, its newton’s iterates converge to the cube roots of unity.

Enlarging the bulb to the left of

the origin we get to see a fractal

NEWTON’S METHOD AND FRACTAL PATTERNS
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the origin we get to see a fractal

structure.



For f(z) = z4 - 1, its newton’s 

iterates converge to the fourth 

roots of unity, 1, -1, i, -i

NEWTON’S METHOD AND FRACTAL PATTERNS

For f(z) = z5 - 1, its we see the 

rich structure of the Newton’s 

basins of attraction
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TEACHING OF GEOMETRY

The teaching of geometry is based on the use two registers

� register of language: language is a means of describing geometrical objects and

relationships between and within them.

� register of diagrams: diagrams are two - dimensional representations of

23

� register of diagrams: diagrams are two - dimensional representations of

theoretical (ideal) objects which highlight graphical – spatial properties of

objects. It is possible to read the properties of the theoretical object simply by

looking at the diagram.



AFFORDANCES OF DGS

In a Dynamic geometry software (DGS)

� geometrical figures are dynamic and can be manipulated rather than static pictures on

paper.

� parts of a figure can be dragged in the geometry window and its measurements will

change dynamically in the algebra window.
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change dynamically in the algebra window.

� we can observe properties which remain invariant and those which vary. This helps us

to verify properties and make conjectures.

� Researchers describe a DGS as a ‘microworld’ which provides the user rich

opportunities to make and test conjectures.



Theory of VariationTheory of VariationTheory of VariationTheory of Variation

…..when engaging in mathematical activities or reasoning, one often tries to comprehend

abstract concepts by some kind of “mental animation”, i.e. mentally visualizing variations

of conceptual objects in hope of “seeing” patterns of variation or invariant properties.

….. one of DGE’s power is to equip us with the ability to retain (keep fixed) a background
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….. one of DGE’s power is to equip us with the ability to retain (keep fixed) a background

geometrical configuration while we can selectively bring to the fore (via dragging) those

parts of the whole configuration that interested us in a mathematical thinking episode.



Discernment in DGSDiscernment in DGSDiscernment in DGSDiscernment in DGS

In DGE it is possible to discern critical invariant properties of geometrical objects under a

continuous variation of certain components of the object.

For example, we may construct a ∆ ABC, measure the interior angles and also the sum of all

three angles.

Dragging the vertex C will allow us to experience variation. Twofold interdependence –

∠ ∠ ∠ °
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Dragging the vertex C will allow us to experience variation. Twofold interdependence –

visual consistency of ∠ ABC + ∠ ACB + ∠ BAC = 180° will come to the fore in the

midst of variation.



Demonstrating key concepts

Exterior Angle Property of a Polygon
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Dragging enables conjecture making: 

A Research Study

7th grade students of India and Sweden used GeoGebra to make conjectures about midpoint

quadrilaterals
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DGS: CONJECTURE TO PROOF

Concept of slope of a line was

introduced and it was used to verify that

opposite sides of EFGH are parallel.
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The midpoint theorem was introduced

and students applied it on ABCD to

prove that EFGH is a parallelogram



DGS: CONJECTURE TO PROOF

Students were asked to make a conjecture regarding the

area of parallelogram EFGH in relation to quadrilateral

ABCD

Used Algebra view to conclude that the area of EFGH

is half that of the original quadrilateral.
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is half that of the original quadrilateral.

Researchers: What does diagonal BD of quadrilateral

ABCD do to the parallelogram EFGH?



ROLE OF HAND HELD TECHNOLOGY 

(GRAPHIC CALCULATORS)

� Handheld portable devices which provide 

dynamic interactive working environments.

� Can be used in the classroom using the 

manager plus software. No separate lab 

is required. 
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is required. 

� Have significant graphic, symbolic and 

numeric capabilities. (Matrices, complex 

numbers, symbolic differentiation, 

data analysis and programming).

� Cheap and affordable as compared 

to computer software.
Casio fx – cg 50 colour graphics 

calculator



Approach problems numerically

Exactness is overemphasized in school mathematics. 

‘Solve’ should mean ‘determine the solution with a 

prescribed degree of accuracy.’

Estimation and Approximation
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1. When will your money triple in value at 6% interest 

compounded annually? 

2. Solve the equation x + 2x = 7 

The calculator allows us to obtain the answer using 

guess, check and improve strategy.



Visualisation

Visually support paper and pencil algebra

(Do algebraically and support visually)

Solve the inequality x3 – 6x2 + 11x - 6 < 0 
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Multiple Representation of concepts
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Screen shots of the graphics calculator displaying the limit 

graphically, and  numerically.
→

− −
=

−

3

2
2

3 2 9
lim

4 4x

x x

x



Modelling and Applications

f(x) = ax(1 – x)
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Understanding recursion numerically 

and graphically through dot and 

cobweb plots



Modelling and Applications

Visualising the onset of chaos and sensitivity to initial conditions

A slight change in the initial 
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A slight change in the initial 

condition produces very different 

behaviour



Math Projects – a rich environment for CT

� Excellent student feedback – they owned their projects and were responsible for their learning, it 

encouraged group work.

� Technology was an ampifier – gave them access to higher level concepts, increased the scope of 

activities.

� Technology as reorganiser – the same sequence did not work for all projects. 

� The outcomes were not predefined, there was a sense of ‘suspense’ and many ‘aha’ moments.Students 

asked many ‘what if’ questions.

37

asked many ‘what if’ questions.

� Presented projects in Fairs and Competitions.

� Engaged in processes which elicit CT

� selecting between representations and creating new ones

� simplifying or generalising problems

� making conjectures

� generating new questions for exploration

� developed their own programs and used the outputs for further exploration



Implications for the curriculum

The inclusion of technology enabled CT explorations will imply

� Inclusion of mathematical modeling and applications, computer programming and 

discrete math in school curriculum

� Redesigning of the curriculum and pedagogy to bring about shift from content to 

processes.

CONCLUSION
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processes.

� Considered use of appropriate technology to help restore balance between the need for 

computational skills and the need for experiencing processes such as exploration and 

conjecture. 

� Large scale orientation of teachers to a pedagogy that inculcates computational thinking. 



� Exploratory tool: served the purpose of a ‘mathematical investigation assistant’ giving 

students control over what they were learning. 

� Computational tool: facilitated the computational process by quickly generating graphs 

and table of values. Helped to lighten the technical work so that students could focus on 

making observations and developing insight.

ROLE OF TECHNOLOGY
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making observations and developing insight.

� An ‘amplifier’ : giving students access to a higher level  concepts e.g In the Hill Cipher 

method.

� Supporting Paper and pencil methods: students did computations manually and verified 

using the tools. Technology gave meaning to their computations.



A Quote

Before computers there were very few good points of contact between what is 

most fundamental and engaging in mathematics and anything firmly planted in 

everyday life. But the computer — a “mathematics - speaking being” in the midst 

of the everyday life of the home, school, and workplace — is able to provide such 
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of the everyday life of the home, school, and workplace—is able to provide such 

links. The challenge to education is to find ways to exploit them.

Seymour Papert - Mindstorms


