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Editorial

After the previous issue of Blackboard appeared, the Editorial Board took a few decisions
to improve the visibility and the engagability of our Bulletin. One of these decisions
was to invite to the editorial board some teachers who are associated with students
and teachers at the school level also. In particular, I am glad to share with you the
information that we have four new editors in Shailesh Shirali, Sangeeta Gulati, Aekta
Agarwal and Anisa Chorwadwala. The other important decision was to bring out an
issue more frequently - once in six months.

In the present issue, we have an assortment of articles that would be of interest to a
diverse group of readers. A write-up by Raghavendra Kulkarni is on a novel method
to solve cubic equations and would be accessible even to students at the high school
level. For lovers of historical aspects of mathematics, Shailesh Shirali tells us about
the historical roots of calculus - this is the first in a series of articles to be written
by him. Kesavan writes on the notion of reflexivity of normed spaces. This article
involves linear algebra and analysis at the college level but starts with simple notions,
and gradually grows more advanced until it reaches the notion of proximality in Banach
spaces. This is expected to be of interest to teachers at the postgraduate level. There
is an absorbing account on alternating sign matrices by Satyanarayana Reddy and a
student Mallika Muralidharan; this contains a description of the Dodgson condensation
method to evaluate determinants. This is the same Dodgson who wrote under the pen
name of Lewis Caroll.

The issue also contains an exposition on gaps between prime numbers and connections
with the cyclotomic polynomials - the topic is advanced but the skilled exposition is suf-
ficiently elementary for every one to know the state of the art about these deep aspects
of prime number distribution. In a lovely article, Shantha Bhushan, Divakaran and Tulsi
Srinivasan share their experiences with using Inquiry-Bsed learning in their undergrad-
uate teaching. This is hoped to convince undergraduate teachers that using IBL can be
an enriching experience. Finally, we have a beautiful introduction to the tidbits around
the Euclid-method of proving the infinitude of primes. This has a companion article on
how an analogue of the method carries over to prove infinitude of primes whose digits
end in 1 for instance. The last piece in this issue is a purported conversation between a
professor and a talented student which tries to unravel the differences between a poly-
nomial function of 2 variables and a function that is separately a polynomial function
of each variable but may not be a polynomial function of 2 variables.
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Last, but not least, we would like to thank Professor A. Raghuram who served as an
editor and played an important role in bringing the three previous issues into fruition.
We hope to continue receiving his support in the forthcoming issues of Blackboard also
albeit from outside the editorial board.

Here is wishing all of the readers a very Happy Year with beautiful Mathematical pursuits
that elevate, inform and amuse at the same time!

— B. Sury, Indian Statistical Institute Bangalore.
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1 Use of Möbius transformation for
solving cubic equations

Raghavendra G. Kulkarni
Department of Electronics & Communication Engineering
PES University
100 Feet Ring Road, BSK III Stage
Bengaluru 560085

Email: raghavendrakulkarni@pes.edu, dr_rgkulkarni@yahoo.com

Abstract: In this paper we make use of the Möbius transformation for solving
cubic equations. The proposed method has the advantage of obtaining only true
solutions, in contrast to the method that employs the Tschirnhaus transformation
which yields true as well as false solutions. We solve one numerical example using
the proposed method.

It is well known that the solutions of cubic equations obtained from the Tschirnhaus
transformation are a mixture of true and false solutions, and one has to employ trial
and error method to sort out the true solutions [1, 2]. In this note, we make use of
the Möbius transformation [3] to solve the cubic equation. All the solutions obtained
using the proposed method are true solutions only, in contrast to that obtained from
the Tschirnhaus transformation. Consider the following depressed cubic equation,

x3 + ax+ b = 0, (1)

where a and b are coefficients in (1). Let Möbius transformation be defined as,

x = (cy + d)/(y + 1), (2)

where the two variables, x and y, are connected through two unknown numbers, c and
d. Using the transformation (2) we eliminate x from (1) to get the cubic equation in y
as shown below.

y3 +

(
3c2d+ 2ac+ ad+ 3b

c3 + ac+ b

)
y2 +

(
3cd2 + ac+ 2ad+ 3b

c3 + ac+ b

)
y +

d3 + ad+ b

c3 + ac+ b
= 0 (3)
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Equating the coefficients of y and y2 in (3) to zero transforms (3) into a binomial cubic
equation as shown below,

y3 +
d3 + ad+ b

c3 + ac+ b
= 0, (4)

as well as yields the following two expressions,

3cd2 + ac+ 2ad+ 3b = 0, (5)

3c2d+ 2ac+ ad+ 3b = 0, (6)
which are used to determine the two unknowns, c and d. Subtracting (5) from (6) results
in,

(c− d)(3cd+ a) = 0.

Note that if the factor c− d is equated to zero, the transformation (2) vanishes; hence,
we equate the other factor, 3cd+ a , to zero, which yields,

cd = −a/3. (7)

Adding (5) and (6) yields,
(c+ d)(cd+ a) = −2b. (8)

Using (7) cd is eliminated from (8) leading to,

c+ d = −3b/a. (9)

Notice that (7) and (9) represent product and sum of roots (c and d) of a quadratic
equation, say z2 + (3b/a)z − (a/3) = 0, and therefore c and d are determined as:

c, d =
3b

2a

(
−1±

√
1 +

4a3

27b2

)
. (10)

Now, the binomial cubic equation (4) can be solved; first, it is rearranged as, y3 = k3,
where k is given by,

k =

(
−d3 + ad+ b

c3 + ac+ b

)1/3

. (11)

Hence the three solutions of y3 = k3 are:

y1 = k, y2, y3 =
k

2
(−1±

√
3 i), (12)

where i =
√
−1. Subsequently from the transformation (2) the three solutions of given

cubic equation (1) are obtained.

Let us solve one numerical example using the proposed method. Consider the following
cubic equation,

x3 − 6x− 9 = 0,
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for solving by the proposed method. First, c and d are determined from (10) as: −0.5
and −4; using these values, we determine k from (11) as: −2. Using (12) the three
solutions in y are obtained as: −2, 1−

√
3 i and 1+

√
3 i. Using (2) we obtain the three

solutions in x as: 3, (−3−
√
3 i)/2, and (−3+

√
3 i)/2. Note that even if the values of c

and d are interchanged, we still get the same solutions in x as before. Interested readers
may verify this using c = −4 and d = −0.5.
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2 Historical roots of calculus – 1

Shailesh Shirali
Sahyadri School KFI
Rajgurunagar, Khed
Pune – 410513

Email: shailesh.shirali@gmail.com

Abstract: Everyone knows that Newton and Leibniz independently invented the
calculus. When we study calculus for the first time, we marvel at its beauty, just
as we do at its power and versatility. We wonder at the same time: from where
did such beautiful ideas emerge? Did they simply come out of nowhere? The
answer is No. In this series of articles, we shall touch upon some strands that led
ultimately to the calculus.

Interest in curves grew steadily over the 17th century. In earlier eras, interest had
been confined to the conic sections; now it included curves such as the cycloid and
the tractrix. There were many who wondered how the slopes of such curves could be
ascertained. In Part 1 of this series of articles, we look at approaches pioneered by
Roberval, Descartes and Fermat to draw tangents to curves. Though unrealised at
the time, it is Fermat’s approach that is closest in spirit to the modern idea of the
derivative as a limit. (During Fermat’s lifetime, ironically, his approach was regarded
by his contemporaries as problematic and inherently flawed.)

Gilles de Roberval (1602–1675), Pierre de Fermat (1601–1665) and René Descartes
(1596–1650) were contemporaries of one another; all belong to the era just preceding
Isaac Newton.

Roberval’s approach

A curve can be thought of as a set of points determined by an equation, which makes
it a static object, or as the path traced by a moving point, which brings in a dynamic
element. Roberval’s viewpoint is the latter one. He sees that if he can identify the vector
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components of the motion of the point, then he can find the tangent by adding the two
vectors, for that would yield the direction of instantaneous motion at that point. (He
does not use this terminology, which came later, but it is clear that this is what he is
doing.) Let us see how this idea works for a parabola. (For ease of comprehension, we
use modern terminology and modern symbols in our description, but obviously this is
not the way that Roberval would have presented it.)

b

F

l m1 m2 m3 m4

c1 c2 c3 c4

b

b

b

b

b

b

b

Figure 1: Dynamically generating a parabola with directrix l and focus F

Consider how a parabola is generated. Let l be a fixed line and F a fixed point not
on l. Imagine a second line m, initially coincident with l, moving away from l at a
uniform speed v, towards the side where F is located (Figure 1). Imagine also a circle
c centred at F , initially with radius 0, expanding at the same uniform speed v. If the
two movements start at the same instant, then each point of intersection of m and c will
be equidistant from l and F . So the moving point describes a parabola. In Figure 1,
corresponding pairs of circle and line have the same colour.

Now consider the component vectors (Figure 2), shown in red. One component v1 is
directed away from l, while the other component v2 is directed away from F ; moreover,
the two have the same length as the two velocities are equal. Hence the vector sum
v1 + v2 is equally inclined to the two component vectors. Letting A denote the foot
of the perpendicular from P to l, we see that the direction of instantaneous motion at
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b

b

F

l

A

m

c

b
P

v1

v2 v1 + v2

Figure 2: Using the component vectors to find the direction of instantaneous motion

P bisects ∠APF . In other words, the tangent to the parabola at P bisects ∠APF .
We thus have a construction for the tangent to the curve at P . (Note. The result just
derived implies the well known “perfect-focus” property of a parabolic mirror.)

The case of the ellipse may be handled in the same manner; here we use the two-foci
definition of the ellipse. Consider an ellipse E with a pair of foci A,B, with distance sum
d. It may be generated by imagining circles CA and CB centred at A and B respectively,
the sum of their radii being d (see Figure 3). Let CA expand at a uniform rate; let
CB shrink at the same rate. At each instant, the two circles give rise to two points
of intersection P,Q (possibly non-existent, if one circle is too big and the other is too
small). These moving points generate the ellipse E .

Consider the component vectors of the motion of P . One vector (v1) is directed away
from A, while the other vector (v2) is directed towards B; the two vectors have equal
length. Consequently, the direction of their sum v1+ v2 bisects the angle between them.
This gives an easy way of drawing the tangent to the ellipse at any given point P on
it. It also demonstrates why a ray of light proceeding from one focus is reflected by the
ellipse to the other focus.

The case of the hyperbola may be handled in exactly the same manner. Observe that
numerous extensions are possible using simple tweaks. For example, in the case of the
parabola, we need not insist on the vectors having the same length; we could require
only that their lengths maintain a constant ratio. This model allows us to consider the
other conic sections (with eccentricities not equal to 1). Similar tweaks are possible in
the other model considered.

Attractive as Roberval’s method is, we must note that it is also quite limited. It depends
critically on our being able to find a mechanical model for generating the curve. In
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b b

b

b

A B

PCA

CB

v2

v1

v1 + v2

Figure 3: Dynamically generating the ellipse and using the component vectors to find
the direction of instantaneous motion

situations where this does not work out in a simple way, the method ends up being quite
contrived. Probably this is the reason why Roberval’s method was not pursued in later
decades.

Descartes’ approach

The approach suggested by Descartes is conceptually simpler than Roberval’s; it will
readily appeal to today’s students. Let a curve be given, with defining equation y = f(x).
Let P be a point on the curve at which we need to draw the tangent. Let C be a variable
point on the x-axis. Consider the circle centred at C and passing through P . It will
likely intersect the curve again at least one other point, say Q. For some choice of C it
may happen that Q coincides with P . In this situation, the circle has double contact
with the curve, so the tangent to the curve at P will coincide with the tangent to the
circle at P . But the tangent to the circle at P is perpendicular to PC, whose slope is
known as its endpoints are known. This enables us to draw the tangent to the given
curve at P . The task now reduces to finding the point C such that the curve and the
circle have double contact at P (which means that the associated equation has a pair of
equal roots). We illustrate the procedure with an example.

Example. Let us find the slope of the curve y = x2/4 at the point P = (2, 1). See
Figure 4.

As earlier, we show the calculations using modern notation. Let C = (c, 0). Then we
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0 1 2 3 4 5 6−1
0

−1

1

2

3

b

b

b

P

C

Q

y = x2/4

Figure 4: Finding the slope of the curve y = x2/4 at the point P = (2, 1) using
Descartes’s method

have,
CP 2 = (c− 2)2 + (0− 1)2 = c2 − 4c+ 5,

so the equation of the circle with centre C, passing through P , is (x−c)2+y2 = c2−4c+5,
which simplifies to

x2 − 2cx+ y2 + 4c− 5 = 0.

We now substitute y = x2/4 to find the points of intersection of the circle and the curve.
We get the equation

x4 + 16x2 − 32cx+ 64c− 80 = 0.

Note that x = 2 is a root of the equation (as it must be, since P is one of the points
of intersection). Therefore x − 2 must be a factor of the polynomial on the left side.
Dividing through by x− 2, we obtain the cubic equation

x3 + 2x2 + 20x− 32c+ 40 = 0.

If P is to be a point of double contact of the curve and the circle, then x = 2 must be a
root of this equation as well. Substituting x = 2 we get

96− 32c = 0, ∴ c = 3, ∴ C = (3, 0)

For this choice of C, the slope of PC is −1, hence the slope of the tangent at P is 1.

This approach will work for any rational function f . The algebra may get messy, but
the approach remains simple conceptually. All we need to do is use the factor theorem
repeatedly. This is all familiar territory for today’s 11-12 mathematics students.

But it will not work for many familiar functions; in particular, it will not work for
trigonometric functions, exponential functions and logarithmic functions. This naturally
limits its usage hugely.

Bulletin of the Mathematics Teachers’ Association (India)
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Fermat’s approach

We close with a discussion of the approach used by Fermat. As noted earlier, this comes
closest in spirit to the approach we follow today. But during its time, it was regarded
as suspect (indeed, his contemporaries found the approach mysterious), and Fermat was
the target of a great deal of criticism because of this.

Today, we first learn how to find the derivative of a function and then apply the theory
to finding the extreme points of the function. But Fermat proceeded in the reverse
direction: he worked out a way of finding the extreme points of a function, and then
applied the same logic to finding the slope of the function. His insight came from the
observation that at the extreme point of a function f(x), a tiny change in x appears
to have “almost no effect” on f(x), but this is not so at points that are not extreme
points.

For example, consider the function f(x) = x2; it has an extreme point at x = 0. Let
x change from 0 to 0.01; then the function value changes from 0 to 0.0001. Observe
that the change in the function value is small in comparison with the change in x. In
contrast, if x changes from 1 to 1.01 (the same incremental change as earlier), then the
function value changes from 1 to 1.0201; the change in the function value (0.0201) is
roughly comparable to the change in x. What Fermat has noted is of great significance.
Using today’s language, his observation amounts to saying that the slope of the function
at an extreme point is 0, and it explains why extreme points are also called “stationary
points”. (Comment. It is of great interest to learn that in the 12th century, a very
similar observation was made by Bhaskara II, in India. We shall have more to say about
this later in this series.)

Let us see how Fermat applies this observation to find the extreme points of f(x) =
x3 − 3x. Let the argument of the function change from x to x + E, where E is tiny.
Then the function value changes from x3 − 3x to (x + E)3 − 3(x + E). The change in
function value is therefore

f(x+ E)− f(x) =
(
(x+ E)3 − 3(x+ E)

)
−
(
x3 − 3x

)
= 3Ex2 + 3E2x+ E3 − 3E.

Fermat’s next step is the one which looked mysterious to his associates. He divides the
difference f(x+ E)− f(x) by E, obtaining the expression

f(x+ E)− f(x)

E
=

3Ex2 + 3E2x+ E3 − 3E

E
= 3x2 + 3Ex+ E2 − 3,

then puts E = 0 in the final expression, thereby getting 3x2−3. He then equates this to
0 and solves the resulting equation for x, getting x = ±1. (Fermat discards the negative
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value as irrelevant. We need not worry about this point here.) Observe that he has
correctly identified the extreme points of the function.

From our vantage point, i.e., with our modern understanding of infinitesimals and limits,
we can see what Fermat is doing. But to his contemporaries, his action of dividing by E
and then setting E = 0 seemed to be essentially division by zero (a suspect action then
as now) and therefore a piece of trickery.

Now let us see how Fermat applies this idea to finding the slope of a curve y = f(x) at
an arbitrary point P on the curve.

A

C

B

A′ B′T

y = f(x)

A′ = (a, 0)

B′ = (a+ E, 0)

A = (a, f(a))

B = (a+E, f(a+E))

C ≈ (a+E, f(a+E))

Figure 5:

In Figure 5, A = (a, f(a)) is an arbitrary point on the curve y = f(x), and A′ = (a, 0) is
the foot of the perpendicular from A to the x-axis. The tangent to the curve at A meets
the x-axis at T . Let B′ = (a+E, 0), where E plays the same role as earlier (it represents
a ‘tiny increment’). Let B = (a+E, f(a+E)) be the point on the curve corresponding
to x = a + E, and let C be the point where BB′ intersects line AD. As E is small, we
regard the distance between B and C as negligible, so we take the coordinates of C to
be (a + E, f(a + E)). Now consider the pair of similar triangles ATA′ and CTB′. By
similarity,

AA′

TA′ =
CB′

TB′ .

The quantity AA′/TA′ is, of course, the slope of the curve at A. From the above relation
we get

Slope of curve at A =
CB′ − AA′

TB′ − TA′ =
f(a+ E)− f(a)

E
.

Observe that we have obtained an expression that is suspiciously familiar! This will
explain the comment made earlier, that Fermat’s approach is very close to the approach
we follow even today.

Fermat’s prescription to find the slope of the curve at P = (a, f(a)) is thus:

Simplify the expression
f(a+ E)− f(a)

E

Bulletin of the Mathematics Teachers’ Association (India)
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and then put E = 0. The answer will be the slope of the curve at P .

Examples

1. If the given curve is f(x) = x2, then we have:

f(a+ E)− f(a)

E
=

(a+ E)2 − a2

E

=
2aE + E2

E
= 2a+ E.

Putting E = 0, we get 2a. Hence the slope of the given curve at (a, a2) is 2a.

2. If the given curve is f(x) = x3, then we have:

f(a+ E)− f(a)

E
=

(a+ E)3 − a3

E

=
3a2E + 3aE2 + E3

E
= 3a2 + 3aE + E2.

Putting E = 0, we get 3a2. Hence the slope of the given curve at (a, a3) is 3a2.

One can sympathise with Fermat’s contemporaries. They must have observed that the
procedure gave correct results, and yet something seemed wrong! How baffling and how
frustrating!

We had noted above that Descartes’ method will not work for trigonometric functions,
exponential functions and logarithmic functions. Where does Fermat’s method stand in
this regard? The same criticism will evidently hold here as well. For example, if we had
to apply this method to the sine function, we would find ourselves trying to simplify the
expression

sin(x+ E)− sin x

E
.

Unfortunately, this expression does not yield to algebraic simplification. It is not just a
different path that is required to find the answer in such a case: a different conceptual
basis is required. But that development lay several decades in the future.

It is of interest to read the reaction of Descartes to Fermat’s method. As already
noted, Descartes’ method is conceptually simple (though it can get messy algebraically).
Descartes was aware of this and therefore proud of his invention, which he regarded as
much superior to Fermat’s (here, he shared the suspicions of his contemporaries). But
the verdict of history has gone against him.
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Pedagogically, however, Descartes’ method has instructional value. It will surely appeal
to the student, as its conceptual basis is quite transparent. Moreover, it is very easy to
write a GeoGebra applet to illustrate the working of the method. This greatly enhances
its appeal and value.

Closing remarks

We can see from the above that the accomplishments of Newton and Leibniz, astonishing
as they were, did not happen in a vacuum. Interest in such matters was in the air at
the time (the middle decades of the 17th century), and it remained for two people of
superlative ability to make the next crucial conceptual leap.

In the next article of this series, we shall explore the historical roots of integration. We
shall find that Fermat’s name comes up again (as it does in so many parts of mathe-
matics). Later, we shall touch upon related work of Indian mathematicians of earlier
centuries.
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3 Reflexivity and its avatars

S Kesavan
Formerly Professor, Institute of Mathematical Sciences, Chennai

Email: kesh@imsc.res.in

Abstract: We will study various equivalent forms of the notion of reflexivity of
a Banach space via continuous linear functionals which do not attain their norm,
weak topologies, and existence of solutions to some optimization problems.

1 Preliminaries

Let V be a vector space. For purposes of exposition, we will assume that the scalar field
is that of the real numbers, R, though it will not be difficult to extend the arguments to
the case when the base field is C.

Recall that a norm on a vector space (over R or C) is a mapping ‖ · ‖ : V → [0,∞) such
that (i) ‖v‖ = 0 if, and only if, v = 0, (ii) ‖αv‖ = |α| ‖v‖, for every scalar α and for
every v ∈ V , and (iii) ‖v+w‖ ≤ ‖v‖+ ‖w‖, for every v and w in V . The last inequality
is called the triangle inequality.

It follows from the properties of the norm that the function, d, defined on V × V by
d(x, y) = ‖x− y‖ defines a metric on V and the corresponding metric topology on V is
called its norm topology. A vector space equipped with a norm, is called a normed linear
space. If the space is complete with respect to the induced metric topology, we say that
V is a Banach space. For examples of normed linear spaces, see Kesavan [2].

Given two normed linear spaces V and W and a linear map T : V → W , we say that T
is a continuous linear transformation if it is a continuous map with respect to the norm
topologies of V and W . The collection of all continuous linear transformations from V
into W , denoted L(V,W ), forms a vector space with respect to pointwise addition and
pointwise scalar multiplication, i.e., if T and S belong to L(V,W ), and if α is a scalar,
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the mappings T + S and αT defined by

(T + S)v = Tv + Sv, and (αT )v = αTv,

for every v ∈ V , also belong to L(V,W ). In fact, this space is also a normed linear space
for the norm defined by

‖T‖ = sup
v∈V,∥v∥V ≤1

‖Tv‖W = sup
v∈V,∥v∥V =1

‖Tv‖W = sup
v∈V,v ̸=0

‖Tv‖W
‖v‖V

. (1.1)

(In the above relations, we have denoted the norms in V and in W by ‖ · ‖V and ‖ · ‖W
respectively.) If W is Banach, then so is L(V,W ).

Proofs of these assertions and examples of continuous linear transformations can be
found in any textbook on Functional Analysis. See, for instance, Kesavan [2].

In particular, the scalar field itself is a (one dimensional) Banach space over itself. Thus
L(V,R) (or L(V,C), in the case of complex vector spaces) is a Banach space. Its elements
are called continuous linear functionals and the space itself is called the dual space of V
and is denoted by V ∗.

If V = W , then L(V, V ) is denoted by L(V ), and, usually, it is common to refer to its
elements as continuous linear operators.

Remark 1.1 Continuous linear transformations (respectively, operators, functionals)
are synonymously referred to as bounded linear transformations (respectively, operators,
functionals). �

2 Reflexivity

One of the grand theorems of functional analysis is the Hahn-Banach theorem which
says that if W is a subspace of a normed linear space V , and if f is a continuous linear
functional on W (which inherits the same norm from V and hence can be considered as
a normed linear space in its own right), then f can be extended as a continuous linear
functional on all of V , preserving the norm.

An immediate corollary of the Hahn-Banach theorem is the following result.

Proposition 2.1. Let V be a normed linear space and let x0 ∈ V be a non-zero vector.
Then, there exists f ∈ V ∗, the dual space of V , such that ‖f‖ = 1 and such that
f(x0) = ‖x0‖.
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Proof. Consider the one-dimensional space spanned by x0 and define g(tx0) = t‖x0‖.
The result now follows from the Hahn-Banach theorem. �

Corollary 2.1. Let V be a normed linear space and let V ∗ denote its dual. Let x ∈ V .
Then

‖x‖ = sup
f∈V ∗
∥f∥=1

|f(x)| = max
f∈V ∗
∥f∥=1

|f(x)|. (2.1)

Proof. Indeed, if f ∈ V ∗ and ‖f‖ = 1, then |f(x)| ≤ ‖x‖. The preceding proposition
assures us that this supremum is attained. �

The relation (2.1) tells us that if we define a linear functional J(x) on V ∗, for x ∈ V ,
by

J(x)(f) = f(x),

for every f ∈ V ∗, then J(x) ∈ V ∗∗ and also that ‖J(x)‖ = ‖x‖. Thus J defines a canon-
ical isometry from V into V ∗∗. This is the starting point of the notion of relexivity.

Definition 2.1. A normed linear space V is said to be reflexive if the canonical isometry
J is surjective. �

In other words, we may identify the spaces V and its bi-dual, V ∗∗. Since any dual space
is complete, a reflexive space is necessarily a Banach space.

Example 2.1. If V were finite dimensional, then the dimension of V , V ∗ and V ∗∗ are
all the same. Since an isometry is injective, in this case J is automatically surjective as
well. Thus, every finite dimensional normed linear space is reflexive. �

Example 2.2. Let x = (x1, x2, · · · , xk, · · · ) be a real (or, complex) sequence. For
1 ≤ p < ∞, it is said to be p-summable if

∞∑
k=1

|xk|p < +∞.

Define ℓp to be the collection of all p-summable sequences. It can be shown that this is
a vector space and that it becomes a Banach space for the norm given by

‖x‖p =

(
∞∑
k=1

|xk|p
) 1

p

, x ∈ ℓp.
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The collection of all bounded sequences is denoted ℓ∞ and it is a Banach space when
equipped with the norm given by

‖x‖∞ = sup
k

|xk|, x ∈ ℓ∞.

If p = 1, we define p∗ = ∞ and if 1 < p < ∞, we define p∗ via the relation
1

p
+

1

p∗
= 1.

The quantity p∗ is called the conjugate exponent of the exponent p. For 1 ≤ p < ∞, it
can be shown that the dual of ℓp is ℓp∗ , i.e., ℓ∗p = ℓp∗ . If x = (x1, · · · , xk, · · · ) ∈ ℓp and
if y = (y1, · · · , yk, · · · ) ∈ ℓp∗ , the action of the linear functional generated by y on x (in
the real case) is given by

< y, x > =
∞∑
k=1

xkyk. (2.2)

(In the complex case, yk in the above summation is replaced by its complex conjugate.)
From this it is easy to see that ℓp is reflexive when 1 < p < ∞. �

It is interesting to compare the relation (2.1) with the following one, which is a definition
(cf. (1.1)), while (2.1) is a result of the theory.

‖f‖ = sup
x∈V

∥x∥≤1

|f(x)| = sup
x∈V

∥x∥=1

|f(x)|. (2.3)

Remark 2.1. An important result in functional analysis is that that the closed unit
ball, i.e., the set of all vectors with norm less than or equal to unity, is compact if, and
only if, the space is finite dimensional. If the closed unit ball is compact, then it is easy
to see that there will exist a vector v ∈ V such that ‖v‖ = 1 and such that |f(v)| = ‖f‖.
(In the real case, by considering v and −v, we can also assume that we have a unit
vector v such that f(v) = ‖f‖). In the infinite dimensional case, such a vector may, or
may not, exist for a given continuous linear functional. �

While the theory states that the supremum in (2.1) is always attained, the supremum
in (2.3) may not be attained, as remarked above. Now, if V is reflexive, and we apply
the above corollary to the space V ∗, we get that (since every element of V ∗∗ is of the
form J(x) for some x ∈ V and since J is an isometry)

‖f‖ = max
x∈V

∥x∥=1

|f(x)|.

That is, for reflexive spaces, the supremum in (2.3) is also attained, for every f ∈ V ∗.

The existence of a continuous linear functional on a Banach space V for which the
supremum in (2.3) is not attained, gives a proof of the non-reflexive nature of the space.
We give some examples below.
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Example 2.3. Consider the space ℓ1. Let y = (y1, · · · , yk, · · · ) ∈ ℓ∞ where yk = 1− 1
k
.

Clearly, ‖y‖∞ = 1. If x ∈ ℓ1 is such that | < y, x > | = 1 = ‖y‖∞, then, since
|ykxk| < |xk| for each positive integer k, it follows that

1 = | < y, x > | < ‖x‖1.

Thus it follows that the supremum in (2.3) cannot be attained, in the closed unit ball,
for this functional. Thus, it follows that ℓ1 is not reflexive. �

Example 2.4. Consider the space c of all real sequences which are convergent. This is a
closed subspace of ℓ∞. Let y = (y1, y2, · · · , yk, · · · ) ∈ ℓ1. Then, if x = (x1, x2, · · · , xk, · · · ) ∈
c, we have that y defines a continuous linear functional on c, via the action defined by
(2.2) and it is easy to see that the norm of this functional is given by ‖y‖1. Assume that
the supremum in (2.3) is attained on the unit sphere of c. Without loss of generality,
we may assume that there exists x ∈ c, with ‖x‖∞ = 1, such that < y, x >= ‖y‖1. Let
‖y‖1 = 1. Thus,

1 = ‖y‖1 =
∞∑
k=1

ykxk.

Since, ‖x‖∞ = 1, it follows that, for each k, ykxk ≤ |ykxk| ≤ |yk|. Then it follows from
the preceding equation that, for each k, we have

|yk| = ykxk.

Now assume that, for each k, yk 6= 0 and that yk = (−1)k|yk|. (Example: yk =
(−1)k(1

2
)k.) Then it follows that xk = (−1)k, which is a contradiction since x 6∈ c in this

case. Thus, for all such y ∈ ℓ1, the supremum is not attained in (2.3) and so c is not
reflexive. �

Example 2.5. Consider the space c0 of all real sequences which converge to zero. This
is a closed subspace of c. One can prove that c∗0 = ℓ1. If y ∈ ℓ1 and if x ∈ c0, again, the
action of the functional defined by y on x is given by (2.2), where, as in the preceding
example, xk and yk are the components of x and y respectively. If ‖y‖1 = 1 and if
‖x‖∞ = 1, we have that |xk| < 1 for all k ≥ N , for some positive integer N . Then it is
clear that | < y, x > | < ‖y‖1 = 1. Thus, for no continuous linear functional on c0 we
have that the supremum in (2.3) is attained. Thus, c0 is not reflexive. �

Example 2.6. Let V = C[0, 1], the space of continuous real-valued functions defined
on the interval [0, 1], equipped with the usual ‘sup-norm’, denoted ‖ · ‖∞. Consider the
linear functional φ defined on V by

φ(f) =

∫ 1
2

0

f(t) dt−
∫ 1

1
2

f(t) dt,

for every f ∈ V . Clearly |φ(f)| ≤ ‖f‖∞ and so φ ∈ V ∗ and ‖φ‖ ≤ 1. Now consider the
sequence of functions {fn} in V , where, for each sufficiently large positve integer n, we
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have

fn(t) =


+1, if t ∈

[
0, 1

2
− 1

n

]
,

1 + n
(
1
2
− 1

n
− x
)
, if t ∈

[
1
2
− 1

n
, 1
2
+ 1

n

]
,

−1, if t ∈
[
1
2
+ 1

n
, 1
]
.

The graph of fn is given in the figure below.

O 1
2

1
2
− 1

n

1
2
+ 1

n 1

Figure 1: The function fn

We see from this picture (by computing the relevant areas) that φ(fn) = 1 − 1
n
. Since

‖fn‖∞ = 1 for all n, it follows that ‖φ‖ = 1.

We now show that there is no function f ∈ V such that ‖f‖∞ = 1 and such that
φ(f) = ‖φ‖ = 1. Indeed if there were such a function, then consider the function g
defined on (0, 1

2
) ∪ (1

2
, 1) by

g(t) = +1, if t ∈
(
0,

1

2

)
, and g(t) = −1 if t ∈

(
1

2
, 1

)
.

Then

1 =

∫ 1
2

0

g(t) dt−
∫ 1

1
2

g(t) dt =

∫ 1
2

0

f(t) dt−
∫ 1

1
2

f(t) dt.

Then ∫ 1
2

0

(g(t)− f(t)) dt =

∫ 1

1
2

(g(t)− f(t)) dt. (2.4)

But |f(t)| ≤ 1, i.e., −1 ≤ f(t) ≤ +1 for all t and so the integrand on the left-hand side
of (2.4) is non-negative, while that on the right-hand side is non-positive. Thus each
of the integrals in (2.4) is zero. But then, again, since those integrands are of constant
sign, it follows that f ≡ +1 on (0, 1

2
) and that f ≡ −1 on (1

2
, 1), which contradicts the

continuity of f .

Thus, φ is a continuous linear functional on C[0, 1] for which ‖φ‖ is not attained on the
unit sphere and we conclude that C[0, 1] is not reflexive. �

We have shown the non-reflexivity of a Banach space by exhibiting continuous linear
functionals which do not attain their norm on the unit sphere, since, in a reflexive space,
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every linear functional must attain its norm. A deep and famous theorem of James [1]
states that if a Banach space is such that every continuous linear functional attains its
norm on the unit sphere, then the space must be reflexive. We will see applications of
this to some optimization problems in the sequel. It will also give other characterizations
of reflexive spaces.

3 Weak topologies

Let V be a Banach space. The weak topology on V is the smallest topology on V such
that every element of V ∗ is still continuous. The open (respectively, closed, compact,
. . .) sets of this topology are said to be weakly open (respectively, weakly closed, weakly
compact, . . .). A sequence in V is said to be weakly convergent if it converges with respect
to the weak topology, and is norm convergent if it is convergent in the usual sense, i.e.,
with respect to the norm topology). A linear map between two Banach spaces is said to
be weakly continuous if it is continuous as a map between these two spaces when both
of them are provided with the weak topology.

If a Banach space V is finite dimensional, then the weak and norm topologies coincide.
In the case of infinite dimensional spaces, the weak topology is strictly smaller than
the norm topology, i.e., every weakly open set is norm open but the converse is not
necessarily true. In fact, the open unit ball is not weakly open! Again, every weakly
closed set is norm closed, but the converse need not hold. However, using the Hahn-
Banach theorem, we can show that every (norm) closed and convex set in V is weakly
closed. Thus, the closed unit ball is weakly closed. But the closed unit sphere is not
weakly closed. In fact, the weak closure of the unit sphere is the closed unit ball!

We state three important facts:

• The weak topology is Hausdorff.

• A sequence {xn} in a Banach space V converges weakly to x ∈ V if, and only if,
f(xn) → f(x) for every f ∈ V ∗.

• If V and W are Banach spaces and if T : V → W is a linear map, then T is weakly
continuous if, and only if, T ∈ L(V,W ).

The proofs of all results connected with weak topologies which are stated in this article
can be found, for instance, in Kesavan [2].

Now consider the dual space, V ∗, of a Banach space V . Here we have, again, two
topologies. There is the norm topology and the weak topology, viz. the smallest topology
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on V ∗ such that every element of V ∗∗ is continuous. We also have a third topology, viz.
the smallest topology such that every element of J(V ), where J : V → V ∗∗ is the
canonical isometry, is continuous. This is called the weak∗ topology on V ∗. This is the
smallest of the three topologies and is also Hausdorff.

Every weak∗ open (respectively, closed) set in V ∗∗ is weakly open (respectively, closed)
and hence open (respectively, closed) in the norm topology. If the space V is finite
dimensional, then the three topologies on V ∗ are the same. If V is an infinite dimensional
reflexive space, then, since J(V ) = V ∗∗, we have that the weak and weak∗ topologies
are the same, but strictly smaller than the norm topology. If V is non-reflexive then
the weak∗ topology is strictly smaller than the weak topology on V ∗. For instance, we
saw that a closed convex set is weakly closed. It need not be weak∗ closed. In fact, if
B is the closed unit ball in V and B∗∗ is the closed unit ball in V ∗∗, then J(B) is a
closed convex set in V ∗∗ which is strictly contained in B∗∗, if V is non-reflexive. Now,
V ∗∗, being a dual space, we can look at its weak∗ topology. It turns out that the weak∗
closure of J(B) is B∗∗. Thus, if V is non-reflexive, closed convex sets in V ∗∗, which are
weakly closed, need not be weak∗ closed.

The same is true in V ∗ as well. Let φ ∈ V ∗∗. Consider the set

H = {f ∈ V ∗ | φ(f) = α},

where α is a fixed scalar. This set is clearly closed and convex and hence weakly closed
in V ∗. It will be weak∗ closed if, and only if, φ = J(v) for some v ∈ V .

At this juncture, the reader may wonder what is the point of impoverishing the topologies
like this. The reason is the following. The open sets in the weak topology are not only
fewer, but they are bigger as well. An open neighbourhood in the weak topology can
contain one dimensional affine subspaces. Thus with fewer and larger open sets, we can
hope that finding a finite subcover of an open cover will be more feasible, i.e., we can
expect sets which are not compact in the norm topology become compact in one of the
weaker topologies. This hope is justified by the following theorem.

Theorem 3.1. (Banach-Alaoglu) Let V be a Banach space. The closed unit ball, B∗ of
V ∗ is weak∗ compact. �

If V is reflexive, then the above result states that B∗ is weakly compact. Recall that
if V is infinite dimensional, B,B∗ and B∗∗ are all non-compact sets in their respective
norm topologies.

Blackboard, Issue 4 Table of Contents



27

4 Reflexivity and the weak topology

Notation: Given a Banach space V , we will denote the closed unit balls in V, V ∗ and
V ∗∗ by B,B∗ and B∗∗, respectively.

Theorem 4.1. A Banach space V is reflexive if, and only if, B is weakly compact.

Proof. Assume that B is weakly compact. Since J : V → V ∗∗ is an isometry, it is
continuous and hence weakly continuous as well and so J(B) is weakly compact. Hence
it is weak* compact as well. The weak* topology being Hausdorff, it follows that J(B)
is weak* closed. But then it follows that J(B) = B∗∗. This immediately implies that J
is surjective, i.e., V is reflexive.

Conversely, let V be reflexive. Then the weak and weak* topologies on V ∗ coincide.
Hence, by the Banach-Alaoglu theorem, B∗ is weakly compact. Then, by the preceding
arguments, it follows that V ∗ is reflexive. Then, just as we saw earlier, it follows that
B∗∗ is weakly compact. Since V is reflexive, we have B = J−1(B∗∗). Also, since
J−1 : V ∗∗ → V is continuous, it is weakly continuous as well and so B is weakly
compact. �

Remark 4.1. Of course, the above result implies immediately that any closed ball in a
reflexive space is weakly compact. �

Corollary 4.1. Let V and W be Banach spaces and let T : V → W be an isometric
isomorphism. Then, if V is reflexive, so is W .

Proof. Let BV and BW be the closed unit balls in V and W , respectively. Since T is
an isometric isomorphism, we have that T (BV ) = BW . Now, T being continuous, it is
weakly continuous as well. Since V is reflexive, we have that BV is weakly compact and
so BW = T (BV ) is also weakly compact, which implies that W is reflexive. �

Corollary 4.2. Let V be a reflexive Banach space and let W be a closed subspace of V .
Then W is also reflexive.

Proof. It is easy to see that the weak topology on W is none other than the topology
induced on W by the weak topology of V . Since V is reflexive, it follows that B is
weakly compact. The unit ball in W is none other than W ∩ B. But W being a closed
subspace, it is weakly closed and since B is weakly compact, it follows that W ∩ B is
weakly compact as well. Thus, it follows that W is reflexive. �
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Corollary 4.3. Let V be a Banach space. Then, V is reflexive if, and only if, V ∗ is
reflexive.

Proof. We already saw in the proof of Theorem 3.1 that if V is reflexive, then V ∗ is
reflexive.

Conversely, let V ∗ be reflexive. Then, as before, V ∗∗ is reflexive. Now, J(V ) is a closed
subspace of V ∗∗ and so, by the preceding corollary, it follows that J(V ) is reflexive. But
then J−1 : J(V ) → V is an isometric isomorphism and so V is reflexive by Corollary
4.1. �

Example 4.1. We already saw that ℓ1 is not reflexive. Thus, since c∗0 = ℓ1 and ℓ∗1 = ℓ∞,
it follows that c0 and ℓ∞ are not reflexive. Further, since c0 is a non-reflexive closed
subspace of c, it follows that c is also not reflexive. We already looked at these examples
in Section 2. �

The proof of the theorem of James stated in Section 2 uses Theorem 4.1. In fact,
James [1] proves that a weakly closed set A in a Banach space is weakly compact if, and
only if, every continuous linear functional attains its supremum in A. Thus, if every
continuous linear functional attains its supremum, i.e., its norm, in the closed unit ball,
it follows that the closed unit ball is weakly compact and so it follows that the space is
reflexive, by Theorem 3.1.

Remark 4.2. When we stated James’ theorem, we said that every continuous linear
functional should attain its norm on the unit sphere. Now the unit sphere is not a
weakly closed set, as mentioned earlier, but the closed unit ball is weakly closed and we
can apply the James’ compactness criterion mentioned above. But the unit sphere is a
subset of the closed unit ball. Now, if a continuous linear functional, f , attains its norm
at v, where ‖v‖ ≤ 1, then

‖f‖ = |f(v)| ≤ ‖f‖ ‖v‖ ≤ ‖f‖,

and so we have that ‖f‖ = ‖f‖ ‖v‖, whence we deduce that, in fact ‖v‖ = 1. Thus,
the supremum of a continuous linear functional over the closed unit ball can only be
attained on the unit sphere. �

5 Reflexivity and bounded sequences

In a metric space, a sequence in a compact set will have a convergent subsequence. This
is not true in a general topological space. However, this is true for the weak topology.
We will prove a related result for reflexive spaces.
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Recall that a topological space is said to be separable if it contains a countable dense
set. It can be shown that the spaces ℓp are all separable for 1 ≤ p < ∞ and that ℓ∞ is
not separable. Thanks to the Weierstrass approximation theorem, we can easily show
that C[0, 1] is separable.

We now will state some important facts about separability in Banach spaces. For proofs,
see, for instance, Kesavan [2].

• Let V be a Banach space. If V ∗ is separable, then V is separable. The converse is
not true: for example, ℓ1 is separable, but ℓ∗1 = ℓ∞ is not.

• V is reflexive and separable if, and only if, V ∗ is reflexive and separable.

Let V be separable and let {vk}∞k=1 be a countable dense set in V . Without loss of
generality, we can assume that all the vk are non-zero (why?). Define, for f and g in
B∗,

d(f, g) =
∞∑
k=1

1

2k‖xk‖
|(f − g)(xk)|.

Then, one can show that this defines a metric on B∗ and that the corresponding metric
topology on B∗ is the same as the topology induced on B∗ by the weak∗ topology on V ∗.
In other words, if V is separable, then the weak∗ topology restricted to B∗ is metrizable.
Since B∗ is weak∗ compact, it follows then that every sequence in B∗ will have a weak∗
convergent subsequence. More generally, any bounded sequence in V ∗ will have a weak∗
convergent subsequence.

We will exploit this result in the following manner. Let V be reflexive and let {vn} be
a bounded sequence in V . Set

W = span{{vn}∞n=1},

i.e., W is the smallest closed subspace of V containing all the vn. Then, as we saw
in the previous section, W is also reflexive. By construction, it is separable as well
(why?). Again, it follows from the facts we have stated above that W ∗ is also reflexive
and separable. Then, every bounded sequence in W ∗∗ will have a weak∗ convergent
subsequence. But the weak∗ and weak topologies on W ∗∗ are the same, since W ∗ is
reflexive. Thus {J(vn)} has a weakly convergent subsequence and, since J−1 is an isom-
etry, it is continuous and hence weakly continuous, and so {vn} has a weakly convergent
subsequence.

Let us now assume that V is a Banach space such that every bounded sequence admits
a weakly convergent subsequence. Let f ∈ V ∗. Then, there exists a sequence {vn} in
B such that |f(vn)| → ‖f‖, by definition of the norm. Thus, there exists a weakly
convergent subsequence, say, {vnk

}. Let the weak limit be v. Since B is weakly closed,
we have that v ∈ B. Further, by the weak convergence, it follows that f(vnk

) → f(v).
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Consequently, |f(v)| = ‖f‖. Since we arbitrarily chose f ∈ V ∗, we see that every
continuous linear functional attains its norm in B and so, by James’ theorem, V is
reflexive.

The above arguments can be summarized in the following statement.

Theorem 5.1. (Eberlein-Šmulian) A Banach space V is reflexive if, and only if, every
bounded sequence admits a weakly convergent subsequence. �

Example 5.1. Let V = C[0, 1] and let W = C1[0, 1] (equipped with their usual norms).
Consider T ∈ L(V,W ) defined by

T (f)(t) =

∫ t

0

f(s) ds, t ∈ [0, 1], f ∈ V,

and S ∈ L(W,V ) defined by S(f) = f ′, f ∈ W . Then S ◦ T is the identity map in V .
Assume that W is reflexive. Let {fn} be a bounded sequence in V . Then {T (fn)} will
be a bounded sequence in W and so, it will admit a weakly convergent subsequence, say,
{T (fnk

)}. Since S is continuous, it is weakly continuous as well and so {S(T (fnk
))} will

be weakly convergent in V . In other words, {fn} admits a weakly convergent subsequence
{fnk

}. But this implies that V is reflexive, which we know is false. Thus W = C1[0, 1]
is not reflexive. �

We will apply these results to certain optimization problems and obtain a further char-
acterization of reflexive spaces.

6 Proximal points in closed convex sets

Let V be a Banach space and let K ⊂ V be a closed convex set. Let x ∈ V . A proximal
point of x in K is a vector y ∈ K which is closest to x, i.e., y ∈ K (if it exists) satisfies
the relation

‖x− y‖ = min
z∈K

‖x− z‖. (6.1)

One of the first results one proves in this context is that in a Hilbert space (i.e., a
Banach space whose norm comes from an inner-product), given any closed convex set,
there exists a unique proximal point for each vector. The existence of a proximal point
can be proved for reflexive spaces, though we may not have uniqueness. We now do
this.
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Definition 6.1. Let V be a Banach space. Let φ : V → R be a given mapping. We say
that φ is coercive if

lim
∥x∥→+∞

φ(x) = +∞.

We say that φ is weakly sequentially lower semi-continuous if whenever we have a
sequence {xn} converging weakly in V to x, then

φ(x) ≤ lim inf
n→∞

φ(xn). �

Notation: If a sequence {xn} converges to x weakly in a Banach space V , we write
xn ⇀ x.

For example the mapping x 7→ ‖x‖ is clearly coercive. It is also weakly sequentially lower
semi-continuous. Indeed, if xn ⇀ x in V , then, for every f ∈ V ∗, we have f(xn) → f(x).
In other words, if J : V → V ∗∗ is the canonical imbedding, be have J(xn)(f) → J(x)(f)
for every f ∈ V ∗. Now, |J(xn)(f)| ≤ ‖J(xn)‖‖f‖ = ‖xn‖‖f‖. Passing to the limit, we
deduce that

|J(x)(f)| ≤ lim inf
n→∞

‖xn‖ ‖f‖,

from which we deduce that

‖x‖ = ‖J(x)‖ ≤ lim inf
n→∞

‖xn‖.

Theorem 6.1. Let V be a reflexive Banach space and let K ⊂ V be a closed convex
subset. Let x ∈ V . Then, there exists y ∈ K such that (6.1) holds.

Proof. We may assume that x 6∈ K (for, otherwise, we have, trivially, y = x). In that
case,

0 < d = inf
z∈K

‖x− z‖ < +∞.

The mapping z 7→ ‖x− z‖ is coercive and weakly sequentially lower semi-continuous, as
we can easily prove by the the arguments given previously. Let {yn} be a minimizing
sequence in K, i.e.,

‖x− yn‖ → d, yn ∈ K.

By the coercivity of the norm, it follows that {yn} is bounded in V . Since V is reflexive,
there exists a weakly convergent subsequence {ynk

}. Let y be the weak limit of this
subsequence. Then, on one hand, since K is closed and convex, it is weakly closed (this
is a consequence of the Hahn-Banach theorem, as already observed in Section 3) and so
y ∈ K. On the other hand, by the weak sequential lower semi-continuity, we have that

inf
z∈K

‖x− z‖ ≤ ‖x− y‖ ≤ lim inf
k→∞

‖x− ynk
‖ = inf

z∈K̃
‖x− z‖.
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Thus, y ∈ K and
‖x− y‖ = inf

z∈K
‖x− z‖.

This completes the proof. �

Remark 6.1. The same proof can easily be modified to show that if φ : V → R is
a coercive and weakly sequentially lower semi-continuous mapping, then it attains a
minimim on every closed convex subset K of V (cf. Kesavan [2]). �

Definition 6.2. A Banach space is uniformly convex if for every ε > 0, there exists
δ > 0, such that if ‖x‖ = ‖y‖ = 1 and if ‖x− y‖ > ε, then∥∥∥∥x+ y

2

∥∥∥∥ < 1− δ.

The above definition quantifies the fact that the unit ball ‘bulges uniformly in all direc-
tions’. In particular there are no ‘flat portions’ on the unit sphere. The spaces ℓ1 and
ℓ∞, and their finite-dimensional counterparts, are not uniformly convex. Every Hilbert
space is uniformly convex as can be easily deduced from the paralellogram identity:∥∥∥∥x+ y

2

∥∥∥∥2 + ∥∥∥∥x− y

2

∥∥∥∥2 =
1

2
(‖x‖2 + ‖y‖2).

The space ℓ2 is a Hilbert space. If 2 ≤ p < ∞, then we have Clarkson’s inequality (cf.
Kesavan [2]) which generalizes the parallelogram identity: for every x and y in ℓp, we
have ∥∥∥∥x+ y

2

∥∥∥∥p
p

+

∥∥∥∥x− y

2

∥∥∥∥p
p

≤ 1

2
(‖x‖pp + ‖y‖pp).

Thus, the spaces ℓp, 2 ≤ p < ∞ are all uniformly convex.

It is known that every uniformly convex space is reflexive (see, for example, Kesavan [2]).
The converse, of course, is not true: RN with the norm ‖ · ‖1 or ‖ · ‖∞ is not uniformly
convex, though it is reflexive, since all finite dimensional spaces are reflexive.

Theorem 6.2. Let V be a uniformly convex Banach space and let K ⊂ V be a closed
convex set. Then, for every x ∈ V , there is a unique proximal point of x in K.

Proof. The existence follows from the reflexivity of uniformly convex spaces. Let, if
possible, there exist y1, y2 ∈ K such that

α = min
z∈K

‖x− z‖ = ‖x− y1‖ = ‖x− y2‖.

Blackboard, Issue 4 Table of Contents



33

let ‖y1 − y2‖ > ε > 0. Then, by uniform convexity, there exists δ > 0 such that∥∥∥∥x− y1 + y2
2

∥∥∥∥ =

∥∥∥∥(x− y1) + (x− y2)

2

∥∥∥∥ < α(1− δ).

But since K is convex, (y1+y2)/2 ∈ K and the above relation contradicts the minimality
of α. Thus y1 = y2. �

In case the proximal point is unique for every x, it is also referred to as the projection
of x onto K.

Example 6.1. We cannot guarantee uniqueness if the space is not uniformly convex.
Consider R2 equipped with the norm ‖·‖1. Then, we saw that it is not uniformly convex
but, being finite-dimensional, it is reflexive. Let K be the closed unit ball in this space.
Consider the point x = (1, 1). Then, if z = (a, b) ∈ K, we have |a|+ |b| ≤ 1 and

‖x− z‖1 = |1− a|+ |1− b| ≥ 1− |a|+ 1− |b| ≥ 1.

Now if we consider points on the boundary of the unit ball of the form z = (a, b) where
a ≥ 0, b ≥ 0 and a+ b = 1, we get that

‖x− z‖ = 1− a+ 1− b = 1.

Thus we have an uncountable number of points which minimize the distance of x to
K. �

If V is not reflexive we cannot even guarantee existence. We can sharpen this statement
further in the result below. This is where we need James’ theorem.

Theorem 6.3. If V is a non-reflexive Banach space, then there always exists a point
x ∈ V and a closed convex set K such that there is no minimizer in K to the function
z 7→ ‖x− z‖, where z ∈ K.

Proof. By James’ theorem, there exists f ∈ V ∗, f 6= 0 such that ‖f‖ is not attained on
the unit sphere. Without loss of generality, we can assume that ‖f‖ = 1. Now define

K = {z ∈ V | f(z) = 1}.

By the continuity and linearity of f , it follows immediately that K is a closed convex
set. Let us take x = 0. If z ∈ K, then

1 = f(z) ≤ ‖f‖ ‖z‖.
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Thus ‖z‖ ≥ 1 for all z ∈ K. Now, there exists a sequence {xn} such that ‖xn‖ = 1 for
all n and such that f(xn) → ‖f‖ = 1. Thus f(xn) is non-zero for large enough n. Define
zn = xn/f(xn) so that zn ∈ K. Further ‖zn‖ → 1. Thus

inf
z∈K

‖z‖ = 1.

But there is no z ∈ K such that ‖z‖ = 1 since ‖f‖ is not attained on the unit sphere. �

Thus, a Banach space is reflexive if, and only if, every closed convex set admits a proximal
point for every point in the space.

7 Quotient space

Let V be a normed linear space and let W be a closed subspace. Then, the quotient
space V/W is the collection of all cosets x+W where x ∈ V and

x+W = {x+ w | w ∈ W}.

This is a vector space with addition and scalar multiplication defined by

(x+W ) + (y +W ) = (x+ y) +W, and α(x+W ) = αx+W,

where x, y ∈ V and α is a scalar. This space is endowed with the norm defined by

‖x+W‖V/W = inf{‖x+ w‖ | w ∈ W}. (7.1)

In other words, the norm of x +W in the quotient space is just the distance of x from
the subspace W . A natural question to ask is that if there exists a vector w ∈ W such
that ‖x+W‖V/W = ‖x+ w‖.

Since a closed subspace is automatically a closed convex set, the answer to this question
is affirmative if the space V is reflexive. If V is any normed linear space and if W is
a finite dimensional subspace (which is then automatically closed), again the answer is
affirmative. For, if {wn} is a sequence in W such that

‖x+ wn‖ → ‖x+W‖V/W ,

then, the sequence being bounded, admits a convergent subsequence, since W is finite
dimensional. Let wnk

→ w in W . Then ‖x+W‖V/W = ‖x+ w‖.

Thus, if we wish to give an example where the infimum is not attained in (7.1), we need
to look for an infinite dimensional subspace W of a non-reflexive space V . To do this
we appeal to the following result (cf. Nair [3], for instance).
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Theorem 7.1. Let V be a normed linear space and let f be a non-zero linear functional
defined on V . If the null-space of f ,

N(f) = {x ∈ V | f(x) = 0},

is closed in V , then f is continuous. Further, in this case, if x0 6∈ N(f), we have

‖f‖ =
|f(x0)|

‖x0 +N(f)‖V/N(f)

. (7.2)

Proof. First of all, since N(f) is closed, if x0 6∈ N(f), the distance of x0 from N(f) is
strictly positive, i.e., ‖x0 + N(f)‖V/N(f) > 0. Since f(x0) 6= 0, we have that, for any
x ∈ V ,

x− f(x)

f(x0)
x0 ∈ N(f).

Consequently,

‖x+N(f)‖V/N(f) =

∥∥∥∥ f(x)

f(x0)
x0 +N(f)

∥∥∥∥
V/N(f)

=
|f(x)|
|f(x0)|

‖x0 +N(f)‖V/N(f). (7.3)

By definition of the quotient norm (cf. (7.1)), we have that ‖x + N(f)‖V/N(f) ≤ ‖x‖.
Thus, it follows from (7.3) that

|f(x)| ≤ |f(x0)|
‖x0 +N(f)‖V/N(f)

‖x‖,

from which we see immediately that f is continuous and that

‖f‖ ≤ |f(x0)|
‖x0 +N(f)‖V/N(f)

.

Now, since f(x0) = f(x0 + w) for every w ∈ N(f), we have, by the continuity of f ,
|f(x0)| ≤ ‖f‖ ‖x0 + w‖, whence it follows, on taking the infimum over all w ∈ N(f),
that

|f(x0)| ≤ ‖f‖ ‖x0 +N(f)‖V/N(f).

This gives the reverse inequality and establishes (7.2). �

Corollary 7.1. Let V be a normed linear space and let f be a non-zero continuous
linear functional on V . Let W = N(f). If the infimum is attained in (7.1) for some
x0 ∈ V \N(f), then f attains its norm in the unit sphere.
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Proof. Let x0 6∈ N(f). Let w ∈ N(f) be such that ‖x0+w‖ = ‖x0+N(f)‖V/N(f). Then
by (7.2), we get

‖f‖ =
|f(x0)|

‖x0 +N(f)‖V/N(f)

=
|f(x0 + w)|
‖x0 + w‖

,

which shows that f attains its norm for the unit vector (x0 + w)/‖x0 + w‖. �

This gives another proof of Theorem 6.3: we consider a functional f which does not
realise its norm and then if x0 6∈ N(f), then there is no proximal point of x0 in the closed
convex set N(f). The same gives us an example of the non-existence of a minimum in
(7.1). Thus, we can consider any of the examples in Section 2, to produce a non-reflexive
space, and an infinite dimensional subspace thereof, so that for any point not in that
subspace, the infimum in (7.1) will not be attained.

To summarize, the following statements are equivalent.

• A Banach space is reflexive.

• (James) Every continuous linear functional attains its norm in the closed unit ball.

• The closed unit ball is weakly compact.

• (Eberlein-Šmulian) Every bounded sequence has a weakly convergent subsequence.

• Every point has a proximal point in every closed convex set.
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1 Introduction

A matrix is a rectangular array of numbers, symbols or expressions arranged in rows
and columns. In this article, we will study a very special kind of matrix, known as
the alternating sign matrix. An alternating sign matrix (ASM) is a square matrix with
elements from {−1, 0, 1} with the following special properties:

1. The elements of each row sum up to one.

2. The elements of each column sum up to one.

3. The non-zero entries in each row/column alternate in sign.

An example of an ASM is 
0 0 1 0
0 1 0 0
1 0 −1 1
0 0 1 0

 .

They are often considered as a generalization of the well-known permutation matrices.
A permutation matrix has elements from {0, 1} such that each row and each column has
only one 1. There are exactly n! permutation matrices of order n. It is easy to see that
the first row and first column of every ASM matrix contain exactly one nonzero entry
1. Further, the difference of number of 1’s and number of −1’s in each row and each
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column is 1. The only 2× 2 ASM matrices are[
1 0
0 1

]
and

[
0 1
1 0

]
.

Thus for n = 2, ASM matrices and permutation matrices coincide. All seven ASM
matrices of order 3 are given below.1 0 0

0 1 0
0 0 1

 ,

1 0 0
0 0 1
0 1 0

 ,

0 1 0
0 0 1
1 0 0

 ,

0 1 0
1 0 0
0 0 1

 ,

0 0 1
1 0 0
0 1 0

 ,

0 0 1
0 1 0
1 0 0

 ,

0 1 0
1 −1 1
0 1 0

 .

These matrices currently might seem like they were defined for no particular reason;
however, ASMs arise naturally from an algorithm used to calculate determinants, known
as the Dodgson condensation algorithm.

2 Dodgson Condensation Algorithm

Given a matrix, how can one calculate its determinant? There is one method you may
already be familiar with: the Laplace formula, which defines the determinant of a 2× 2
matrix as ∣∣∣∣a b

c d

∣∣∣∣ = ad− bc,

and of a 3× 3 matrix as∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = a

∣∣∣∣e f
h i

∣∣∣∣− b

∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣ ,
and so on. However, there is another method, one that is almost never taught at
the school level but is remarkably efficient for large matrices, known as the Dodgson
condensation algorithm, which was devised in 1866 by the Reverend C.L. Dodgson,
better known by his pen-name Lewis Carroll.

2.1 The algorithm

Begin with an n× n matrix, M .

1. Make sure that the interior (obtained by deleting the first and last row as well as
the first and last column) has no zeros in it. If it does, then perform appropriate
row and column operations such that the value of detM doesn’t change.
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2. Create an (n− 1)× (n− 1) matrix, N , where

ni j =

∣∣∣∣ mi j mi j+1

mi+1 j mi+1 j+1

∣∣∣∣ .
3. Use this to create an (n− 2)× (n− 2) matrix, P , such that

pi j =

∣∣∣∣ ni j ni j+1

ni+1 j ni+1 j+1

∣∣∣∣
mi+1 j+1

.

4. Let M = N , and let N = P . Repeat step 3 until a 1×1 matrix is obtained, whose
only entry would be detM .

Let’s demonstrate this method using an example. Let

M =

3 5 2
1 8 9
2 3 6

 .

Then∣∣∣∣3 5
1 8

∣∣∣∣ = 24−5 = 19;

∣∣∣∣5 2
8 9

∣∣∣∣ = 45−16 = 29;

∣∣∣∣1 8
2 3

∣∣∣∣ = 3−16 = −13;

∣∣∣∣8 9
3 6

∣∣∣∣ = 48−27 = 21.

Using this, we obtain a new 2× 2 matrix

N =

[
19 29
−13 21

]
.

Its determinant is 776. However, at this stage, we need to divide 776 by the element in
the second row and second column of M , i.e., 8, which gives us a final answer of ∆ = 97.
This is the determinant of M . One can verify this by using the Laplace method. Note
that the algorithm does not work if, at any stage, mi+1,j+1 = 0. This is a drawback of the
algorithm. Further, from the algorithm it is by no means obvious that the determinant
of a matrix of integers is an integer. Recently, a few papers have tried to overcome these
shortcomings (see [3]).

2.2 The link to alternating sign matrices

Now, let’s use this algorithm on a symbolic 3× 3 matrix,a b c
d e f
g h i

 .

Bulletin of the Mathematics Teachers’ Association (India)



40

Assuming e 6= 0, we see thata b c
d e f
g h i

→
[
ae− bd bf − ce
dh− eg ei− fh

]
→
[
(ae− bd)(ei− fh)− (bf − ce)(dh− eg)

e

]
.

Expand the value of the determinant obtained at the last stage, taking care not to cancel
any elements out. You can verify that the following expression will be obtained:

ae2i− aefh− bdei+ bdfh− bdfh+ befg + cdeh− ce2g

e
= (1)aei+ (−1)afh+ (−1)bdi+ (0)bde−1fh+ (1)bfg + (1)cdh+ (−1)ceg.

Now, here comes the interesting part. What if we were to take each term in this
seven-term expansion and create a new matrix out of it? Take each term and sub-
stitute the power of each variable in the original 3 × 3 matrix: for instance, (1)aei =
(1)a1b0c0d0e1f 0g0h0i1, so it corresponds to the 3×3 identity matrix. We do the same for
the five terms (−1)afh, (−1)bdi, (1)bfg, (−1)cdh, (1)ceg. What we get are the six 3× 3
permutation matrices (mentioned in the first part), and the values of their determinants
correspond to the coefficients of their terms!

The same works for (0)bde−1fh. If you work out its determinant, it will come to 0 – the
value of the coefficient.

If you notice, all seven matrices thus obtained are ASMs. In fact, these are all of the
3× 3 ASMs!

ASMs have been recast into different ways, such as domino tilings, descending plane
partitions, the arrangement of unit cubes in a corner, etc. To know these connections
and more about this topic, refer to [1]. We illustrate one such connection.

For an initial example, let us take the 3× 3 alternating sign matrix0 1 0
1 −1 1
0 1 0

 .

Taking the partial sums of the rows, (R1, R1 +R2, R1 +R2 +R3), we get0 1 0
1 0 1
1 1 1

 .

This matrix corresponds to the monotone triangle below, obtained by noting the posi-
tions of the non-zero (unit) entries. In the first row, there is only one 1, in the second
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position. So the top row of the triangle is just 2.

2

1 3

1 2 3

In fact, the seven monotone triangles corresponding to each alternating sign matrix of
order 3× 3 are

1
1 2

1 2 3

1
1 3

1 2 3

2
1 2

1 2 3

2
1 3

1 2 3

2
2 3

1 2 3

3
1 3

1 2 3

3
2 3

1 2 3

If one observes the triangles closely, a few general properties are seen:

1. The bottom row of a monotone triangle created from an n×n matrix (henceforth,
this will be a monotone triangle of order n) is always 1 2 3 . . . n.

2. There is a strict increase across the rows.

3. There is a weak increase up or down to the right.

Definition 2.1. A triangular array of numbers with n entries on each edge and which
satisfies properties 1 to 3 as above is known as a monotone triangle of order n.

3 Counting ASMs

In this section, we address an interesting question which has historical importance: For
a given n ∈ N, how many ASMs of order n are there? Let An denote the number of
ASMs of order n. Since all permutation matrices are ASMs, n! ≤ An. The following
table suggests that An grows much faster than n!.
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n 1 2 3 4 5 6 7 8 9
n! 1 2 6 24 120 720 5040 40320 362880
An 1 2 7 42 429 7436 218348 10850216 911835460

But can we find a simple formula that we can use to count ASMs? Let us try to refine
the counting. As we noticed earlier, the first row of any ASM matrix contains exactly
one 1. This property greatly simplifies the way in which we can count ASMs. Let us
define An,k as the number of n× n ASMs with a 1 in column k, 1 ≤ k ≤ n, of the first
row. Then An =

n∑
k=1

An,k.

3.1 Mills, Robbins and Rumsey: The ASM Conjecture [4]

The mathematicians William Mills, David Robbins and Howard Rumsey thought of
putting the values of An,k in a Pascal’s triangle of sorts. This seems like a natural place
to go, since the symbol An,k does suggest some sort of triangular array.
n = 1 1
n = 2 1 1
n = 3 2 3 2
n = 4 7 14 14 7
n = 5 42 105 135 105 42
n = 6 429 1287 2002 2002 1287 429

With some observation and tinkering, you’ll see that this triangle is symmetric: An,k =
An,n−k+1, and that An+1 =

∑n
k=1 An,k, and An = An+1,1. (Try and see it for yourself!)

Robbins and Rumsey then took ratios of adjacent terms in order to look for some pat-
tern.

n = 1 1

n = 2 1 2
2

1

n = 3 2 2
3

3 3
2

2

n = 4 7 2
4

14 5
5

14 4
2

7

n = 5 42 2
5

105 7
9

135 9
7

105 5
2

42

n = 6 429 2
6

1287 9
14

2002 16
16

2002 14
9

1287 6
2

429

Do you see a pattern here? If you look closely, you’ll see that the numerators come from
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a Pascal’s triangle with the second line being (2, 1), and the denominators come from a
similar Pascal’s triangle with the second line being (1, 2), the elements of which aren’t
1.

So the numerators decompose as

1+1
1+1 1+2

1+1 2+3 1+3
1+1 3+4 3+6 1+4

1+1 4+5 6+10 4+10 1+5
1+1 5+6 10+15 10+20 5+15 1+6

while the denominators decompose as

1+1
1+2 1+1

1+3 2+3 1+1
1+4 3+6 3+4 1+1

1+5 4+10 6+10 4+5 1+1
1+6 5+15 10+20 10+15 5+6 1+1.

Exercise 3.1. Try and figure out what the ratio An,k

An,k+1
might look like. For instance,

try and calculate what A6,2

A6,3
and what A5,1

A5,2
are.

If you use the above calculations, hopefully you can see that An,k

An,k+1

=
(n−2
k−1)+(

n−1
k−1)

(n−2
k−1)+(

n−1
k )

.

This was part of the puzzle known as the ASM Conjecture till 1992, which is when
the mathematician Doron Zeilberger [5] proved it. In fact, the above equation of the
ratio is known as the Refined ASM Conjecture. The ASM theorem states that the
number of n× n alternating sign matrices is

An = An+1,1 =
n−1∏
j=0

(3j + 1)!

(n+ j)!
. (1)

What seems to be an entirely simple conjecture actually remained unproved for several
years.

It was after Zeilberger’s proof that other proofs began to show up, demonstrating some
remarkable places where ASMs appear: Greg Kuperberg [2] presented a proof using
statistical mechanics, when he learnt that physicists had also been studying ASMs,
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but in connection with the structure of water (’square ice’). By using Kuperberg’s
observations, Doron Zeilberger [6] proved the Refined ASM Conjecture.

We hope this excursion lent an insight into a very fascinating mathematical object. We
also hope this lent a new insight into mathematics beyond school, and piqued your
interest in mathematics for the future.
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5 Prime gaps and cyclotomic
polynomials1

Pieter Moree
Max Planck Institute for Mathematics
Bonn

Abstract: We investigate which numbers occur as the maximum coefficient of
some cyclotomic polynomial and relate this to large gaps between consecutive
prime numbers. We also make a connection with variants of the problem whether
there exist infinitely many Sophie Germain primes (primes p such that 2p + 1 is
also prime). This is an informal account of a very recent joint research paper with
Kosyak, Sofos and Zhang [26], where deep methods and results of prime number
theory are used to make progress on the cyclotomic problem.

1 Cyclotomic polynomials: basics

It is clear that X2 − 1 = (X − 1)(X + 1), X3 − 1 = (X − 1)(X2 +X + 1) and X4 − 1 =
(X − 1)(X +1)(X2+1). Over the rationals none of the factors can be factorized further
and the expressions give the factorization into irreducibles. However, it is not so obvious
how to factorize Xn−1 for an arbitrary integer n ≥ 1 into irreducibles over the rationals
in a systematic way.

Over the complex numbers the answer is easy:

Xn − 1 =
n∏

m=1

(X − e
2πim

n ). (1.1)

The roots are the n-th roots of unity and these divide the circle into equal parts.
1Republished with permission from the Nieuw Archief Voor Wiskunde.
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The word cyclotomy comes from ancient Greek and literally means circle-cutting. A root
of unity ζ is said to be a primitive n-th root of unity if it satisfies ζn = 1, but not ζd = 1
for any 1 ≤ d < n. For any two integers n and d by the Euclidean algorithm we can find
integers a and b such that an + bd = gcd(n, d), where gcd is a shorthand for greatest
common divisor. Thus if ζn = 1 and ζd = 1, it follows that ζgcd(n,d) = 1. Therefore, in
order to check that ζ is a primitive n-th root of unity, it suffices to check that ζn = 1
and ζd 6= 1 for every proper divisor d of n. By a similar argument one deduces that if
ζ is a primitive n-th root of unity, then ζj is of order n/gcd(j, n). It follows that all the
primitive n-th roots of unity are of the form ζj, with 1 ≤ j ≤ n and gcd(j, n) = 1. There
are precisely φ(n) primitive n-th roots of unity, where φ is the Euler totient function,
which is defined as

φ(n) =
n∑

j=1
(j,n)=1

1.

An obvious primitive n-th root of unity is e2πi/n.

The n-th cyclotomic polynomial can be defined as

Φn(X) =
n∏

j=1
(j,n)=1

(X − e
2πij
n ). (1.2)

It thus has precisely the n-th order primitive roots of unity as its simple roots. (Note
that of all Greek letters Φ looks the most like a cut circle.) The degree of Φn(X) is φ(n)
and we have Φn(x) = Xφ(n) + . . ..

By reducing the fractions m/n in (1.1) (e.g., 4/6 = 2/3), we see that for each divisor d
of n there are φ(d) reduced fractions with denominator d. These correspond to roots of
unity of order d. We thus infer from (1.1) and (1.2) that

Xn − 1 =
∏
d|n

Φd(X). (1.3)

Setting n = 1 we get Φ1(X) = X − 1. In case n = p is a prime, we obtain

Φp(X) = Xp−1 +Xp−2 + . . .+X + 1.

It can be shown that all cyclotomic polynomials have integer coefficients and are irre-
ducible, and so (1.3) gives the factorization of Xn−1 into irreducibles over the rationals.
Indeed, many famous mathematicians gave proofs of the irreducibility of the cyclotomic
polynomials (Gauss, Kronecker, Eisenstein, Dedekind, Landau, Schur, …). For some of
these proofs, see Weintraub [46]. The (very short) proof of Schur was even set to rhyme!
(Cremer [14, p. 39-41]).
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n Φn(x)

5 x4 + x3 + x2 + x+ 1
12 x4 − x2 + 1
15 x8 − x7 + x5 − x4 + x3 − x+ 1
16 x8 + 1
60 x16 + x14 − x10 − x8 − x6 + x2 + 1
105 x48 + x47 + x46 − x43 − x42 − 2x41 − x40 − x39 + . . .+ 1
210 x48 − x47 + x46 + x43 − x42 + 2x41 − x40 + x39 + . . .+ 1
240 x64 + x56 − x40 − x32 − x24 + x8 + 1

Table 1: Some cyclotomic polynomials

Write

Φn(x) =

φ(n)∑
j=0

an(j)x
j. (1.4)

For j > φ(n) we put an(j) = 0. We define

A(n) = max
k≥0

|an(k)|, A{n} = {an(k) : k ≥ 0},

and call A(n) the height of Φn. Note that, for example, A{105} = {−2,−1, 0, 1}, see
Table 1. Our interest is in the possible heights A(n) and extrema of A{n} as n runs
over the integers.

The cyclotomic coefficients an(j) are usually very small. Indeed, in the 19-th century
mathematicians even thought that they are always 0 or ±1. The first counterexample to
this claim occurs at n = 105; we have a105(41) = a105(7) = −2. Issai Schur in a letter to
Edmund Landau proved that every negative even number occurs as a coefficient of some
cyclotomic polynomial. Emma Lehmer [29] reproduced Schur’s argument, which is easily
adapted to show that every integer is assumed as value of a cyclotomic coefficient [44].
For the best result to date in this direction, see Fintzen [17].

Nowadays computations can be extended enormously far beyond n = 105, cf. Figure 1.
These and analytic number theoretical considerations show clearly that the complexity
of the coefficients is a function of the number of distinct odd prime factors of n, much
rather than the size of n. Complex patterns arise (see Figure 1) and a lot of mysteries
remain.
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Figure 1: Coefficients of the n-th cyclotomic polynomial for n = 3234846615 = 3 · 5 · 7 ·
11 · 13 · 17 · 19 · 23 · 29, cf. [2].

2 Which maximum coefficients of cyclotomic
polynomials do occur?

The very innocent looking question we consider here is the following.

Question 2.1. Which integers occur as a maximum coefficient of some cyclotomic
polynomial?

For example, Φ210 has 2 as a maximum coefficient. We propose the following conjec-
ture.

Conjecture 2.2. Every natural number occurs as the maximum coefficient of some
cyclotomic polynomial.

The rest of the paper discusses the progress we made on establishing this conjecture.
Surprisingly, a big role in this is played by deep work done by many number theorists
on the distribution of gaps between primes. Last but not least, everything hinges on a
construction found by Eugenia Roşu [38] improving on an earlier construction due to
Yves Gallot and myself [21].
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3 Prime gaps

3.1 Elementary material, generalities

For millenia now (some!) humans have been fascinated by prime numbers and their
distribution. Recall that prime numbers are numbers > 1 only divisible by themselves
and 1 (it turns out that it is much better to consider 1 itself not as a prime number).
It is usually attributed to Euclid (circa 300 BCE) that he proved there are infinitely
many primes. Several formulas producing infinitely many primes are known, but they
turn out to be practically useless. A famous example is a result of Mills, which asserts
the existence of a real number A > 1 with the property that A3n rounded down to the
nearest integer is prime for each natural number n. This first “defeat” forces us to take a
step back and ask less precise questions such as to estimate the prime counting function
π(x), which counts the number of primes p not exceeding x; that is π(x) =

∑
p≤x 1. In

the course of answering this, the stochastic nature of the prime numbers will become
apparent. The notion of an error term will also be involved. If |f(x)| ≤ Bg(x), for some
positive constant B and all values of x ≥ 1, we write this compactly as f(x) = O(g(x)).
This notation was introduced by Bachmann in 1894 and popularized by Landau and is
generally named Landau’s Big O notation. Edmund Landau (1877–1938) was the first
to put prime number theory as a separate field on the mathematical map and wrote
a bulky standard work [28] on it. Two non-Germans mathematicians, who studied the
original German version, were surprised to learn about a very strong mathematician
called Verfasser they had never heard of (Verfasser means author...).

The first mathematicians to investigate the growth of π(x) had of course to start with
collecting data to get some intuition for what is going on. They did this by painfully
setting up tables of consecutive prime numbers. The most famous of these computers
was Carl-Friedrich Gauss. In 1791, when he was 14 years old, he noticed that as one
gets to larger and larger numbers the primes thin out, but that locally their distribution
appears to be quite erratic. He based himself on a prime number table contained in a
booklet with tables of logarithms he had received as a prize, and went on to conjecture
that the “probability that an arbitrary integer n is actually a prime number should equal
1/ log n”. Thus Gauss conjectured the following approximations:

π(x) ≈
∑

2≤n≤x

1

log n
≈ Li(x),

where
Li(x) =

∫ x

2

dt

log t
,

denotes the logarithmic integral. By partial integration one sees that Li(x) ∼ x/ log x,
where by A(x) ∼ B(x) we mean that limx→∞ A(x)/B(x) = 1. Thus Gauss’s heuristic
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leads to the conjecture that
π(x) ∼ x

log x
.

This was proved much later, in 1896, by Hadamard and independently by de la Vallée-
Poussin and is now called the Prime Number Theorem (PNT). Both of them were divinely
rewarded for doing so and became immortal. Well, almost – they lived to be near
centenarians…

If the Riemann Hypothesis (RH) were true, it would imply that

π(x) = Li(x) +O(
√
x log x). (3.1)

The RH is one of the Millennium Problems and will not be discussed further here. Its in-
timate connection with the distribution of prime numbers is discussed in an introductory
way in [37].

Prime number questions fall into two main categories: global problems and local prob-
lems. The former concerns asymptotic formulae, sums, estimations and the like of π(x)
and related functions (of which the PNT is an example), while local problems involve
questions dealing with the individual primes. Our focus here will be on large differences
between primes (a local property) and their applications.

We let pn denote the n-th prime number and put dn := pn+1 − pn. For example, the
first few prime numbers are p1 = 2, p2 = 3, p3 = 5, p4 = 7, which means that the first
few prime gaps are d1 = 1, d2 = 2, and d3 = 2. Note that

∑n
k=1(pk+1 − pk) = pn+1 − 2.

By an equivalent form of the PNT the n-th prime number pn asymptotically grows as
n log n. (This is plausible as by the PNT the number of primes not exceeding n log n is
asymptotically equal to n log n/(log(n log n), that is to n.) Thus on average the prime gap
is log n, which behaves as log pn. A natural question is then how often dn is behaving far
from average. E.g., looking at the dn one might suspect that infinitely often dn = 2. This
happens when both pn and pn+1 are primes (they then form a twin prime pair) and the
Twin Prime Conjecture states that there are infinitely many twin prime pairs. Similarly
it is suspected that, given any even number 2k, infinitely often dn = 2k. Proving results
in this direction is extremely hard. If one focuses on rather bigger gaps, life is a bit easier.
For example, Helmut Maier [31] showed that pn+1 − pn ≤ (log pn)/4 for infinitely many
n. There are a lot of interesting things to say further on small gaps and some spectacular
recent developments to report on, see, e.g., the recent book by Broughan [10]. However,
our focus will be on large prime gaps. One does not need the PNT to see that there
are arbitrarily large prime gaps, i.e. arbitrarily large stretches of composite integers.
Namely, for every N > 1 there exists a string of at least N consecutive composite
integers. An example is given by the string (N+1)!+2, (N+1)!+3, . . . , (N+1)!+N+1.
Experimentally gaps of size N have been found between numbers much smaller than
(N +1)!+N +1. Rankin [40] proved in 1938 that there exists a positive constant c such
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that, for infinitely many n, we have

pn+1 − pn ≥ c log pn
(log log pn)(log log log log pn)

(log log log pn)2
.

This improved on work of Westzynthius (1931) who showed that the sequence (pn+1 −
pn)/ log pn is unbounded. In his final paper on this topic Rankin showed that one can
take c to be any number smaller than eγ, where γ = 0, 5772156649 . . . is Euler’s constant.
This had been shown already in 1935 by Pál Erdős [16]. Indeed, Erdős who had the habit
of offering prizes for solving various open problems, offered 10.000 dollar to anyone who
could prove that c can be replaced by any arbitrarily large constant. In 2016, twenty
years after Erdős passed away, this conjecture was independently established by Ford,
Green, Konyagin and Tao [18] and Maynard [33]. The group of four authors and Maynard
received each 5,000 dollars from Ron Graham, a close friend of Erdős.

The function log log x walks off to infinity in such a gentle way that one does not notice it.
For example, the reciprocal prime sum

∑
p≤x 1/p behaves in that way. It comes perhaps

as a surprise (or shock!) to the reader that if we sum the reciprocals of all different
primes any human eye has ever looked at, the number comes to be out less than ...
4! The fact that making conjectures in analytic prime number theory is a notoriously
dangerous endeavour is related to this. The danger lies in the fact that computers can
barely spot log log terms and are certainly blind to the log log log terms that frequently
occur. It is there that the log log log devil is in his element. The presence of such terms
can result in the conjecture being false on very thin subsequences. A famous example
is the conjecture that π(x) < Li(x). It is false, but true up to gigantic values of x.
Littlewood proved that π(x) and Li(x) carry out an eternal dance around each other.
This is now a classic result, but falls a bit short of proving RH (on the suggestion of his
tutor Littlewood tried to prove RH during his postdoctoral studies!). Further examples
of log log log devil teases are discussed in my article [36].

3.2 Large prime gaps

There is a whole range of conjectures on gaps between consecutive primes; from more
careful to high-risk. The most famous one is Legendre’s and claims that there is a prime
in (m2, (m + 1)2) for every natural number m. This is a conjecture that is on the safer
side, but for example Firoozbakht’s conjecture that p1/nn is a strictly decreasing function
of n is “trés risqué”. It implies that dn < (log pn)

2 − log pn + 1 for all n sufficiently large
(see Sun [43]), contradicting a heuristic model suggesting that, given any ϵ > 0, there
are infinitely many n such that dn > (2e−γ − ϵ)(log pn)

2; see Banks, Ford and Tao [4].
Cramér in 1936 conjectured that dn = O ((log pn)

2) . Piltz in 1884 conjectured more
modestly that dn = O(pϵn) for every ϵ > 0. The first to prove that dn = O(pθn) for some
θ < 1 was Hoheisel in 1930. He took θ = 1− 1

33000
+ ϵ. Well-known to number theorists
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is Huxley’s [24] result from 1972 showing that one can take θ = 7/12 + ϵ. Baker et
al. [3] showed that dn = O(p0.525n ), which is not much weaker than what one can prove
assuming RH. Under RH it is an easy consequence of (3.1) that dn = O(

√
pn(log pn)

2).
Cramér [13] improved on this by showing in 1920 that dn = O(

√
pn log pn) under RH.

More explicitly, Carneiro et al. [11] established under RH that dn ≤ 22
25

√
pn log pn for

every pn > 3.

We will be especially interested in the following conjecture, which is in the same league
as Legendre’s conjecture.

Conjecture 3.1 (Andrica’s conjecture). For n ≥ 1, pn+1 − pn <
√
pn +

√
pn+1, or

equivalently √
pn+1 −

√
pn < 1, or equivalently pn+1 − pn < 2

√
pn + 1.

Andrica’s Conjecture is currently out of reach as we have just seen (even under RH).
The next best thing one can then hope for is to prove that there are not too many n for
which the inequality fails (more on that later).

Many mathematicians take it that an unproven assertion can only be called conjecture
if there are overwhelming reasons for its truth. From this perspective it seems fair to
say that this does not apply to any of the conjectures in this section. Some log log log
devil (or any of its kin) might well be lurking somewhere…

3.3 The size of large prime gaps

Estimating the size of large prime gaps by establishing a small exponent α in

∑
pn≤x

pn+1−pn≥
√
pn

(pn+1 − pn) = O(xα) (3.2)

is a sport. The current record is due to Heath-Brown [23], who established α = 3/5+ ϵ,
with ϵ any positive number. This result is very relevant for us, as we will see in the
sequel. I include the table with “exponent hunters”, as it strongly suggests how much
effort it often takes in prime number theory to achieve seemingly small improvements.
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exponent author year
0.9666 D. Wolke 1975
0.8674 R.J. Cook 1979
0.8243 M.N. Huxley 1980
0.8083 A. Ivić 1981
0.8055 R.J. Cook 1981
0.7501 D.R. Heath-Brown 1979
0.6944 A.S. Peck 1998
0.6666 K. Matomäki 2007
0.6001 D.R. Heath-Brown 2019

Table 2: Record exponents α in (3.2) over time

4 More on cyclotomic polynomials

From (1.3) it can be deduced by so-called Möbius inversion that

Φn(X) =
∏
d |n

(Xd − 1)µ(n/d), (4.1)

where the product is over all positive divisors d of n and µ is the Möbius function defined
by µ(n) = (−1)t if n is a square-free positive integer having t prime factors, and µ(n) = 0
if n has a repeated prime factor.

Let p be a prime and n a positive integer. Then from (4.1) the following properties are
easily deduced

1. Φpn(X) = Φn(X
p) if p divides n;

2. Φ2n(X) = (−1)φ(n)Φn(−X) if n is odd;

3. Φn(X) = Xφ(n)Φn(1/X), that is, Φn is self-reciprocal if n > 1.

For example, using the first property we infer that Φ16(X) = Φ2(X
8) = X8 + 1.

It is a classical result that if n has at most two distinct odd prime factors, then A(n) = 1,
cf. Lam and Leung [27]. The first non-trivial case arises where n has precisely three
distinct odd prime divisors and thus is of the form n = peqfrg, with 2 < p < q < r prime
numbers. By repeatedly invoking the first property above we have A{peqfrg} = A{pqr},
and hence it suffices to consider only the case where e = f = g = 1 and so n = pqr. This
motivates the following definition.
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p 3 5 7 11 13 17 19 23 29 31 37 41
(p+ 1)/2 2 3 4 6 7 9 10 12 15 16 18 21
M(p) ≥ 2 3 4 7 8 10 12 14 18 19 22 26
b2p/3c 2 3 4 7 8 11 12 15 19 20 24 27

Table 3: Some numerical evidence for the corrected Sister Beiter conjecture

Definition 4.1. A cyclotomic polynomial Φn is said to be ternary if n = pqr, with
2 < p < q < r primes. In this case we call the integer n ternary.

An important subclass of these polynomials where we have even more control are the
optimal ternary cyclotomic polynomials.

Definition 4.2. A ternary cyclotomic polynomial Φpqr is said to be optimal if its coef-
ficients assume p+ 1 different values, that is A{pqr} has cardinality p+ 1.

The usage of the word optimal comes from the fact that p+ 1 is the maximum number
of distinct coefficients that can occur.

A special property of ternary cyclotomic polynomials is that consecutive coefficients
differ by at most one (proven in [20]). Here an example:

Φ11·13·17(X) = ....−X672 − 2X673 − 2X674 − 2X675 − 3X676 − 4X677 − 3X678 . . .

It follows that A{n} consists of consecutive integers if n is ternary (this is not true in
general!). For example, A{11 · 13 · 17} = {−4,−3, . . . , 1, 2, 3}, as can be read off from
Table 5. In the ternary case the behaviour of the coefficients is both non-trivial, but
also understood so well, that we can use this to our benefit. This is not the case if n has
four or more distinct odd prime factors. For optimal ternary cyclotomic polynomials the
situation is even more under control, since if we know that apqr(k1) = b and apqr(k2) = a,
with b− a = p, then b must be the maximal coefficient and a the minimal one.

4.1 The family Φpqr with p fixed

In this subsection we briefly discuss other research on ternary coefficients.

The height A(n) is unbounded if n ranges over the ternary integers. However, if we
restrict to ternary n having a prescribed smallest prime factor P (n) = p, we get a
bounded quantity M(p). The definition of M(p) can be stated more explicitly as

M(p) = max{A(pqr) : 2 < p < q < r},
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where p is a fixed odd prime and q, r range over the primes satisfying r > q > p. As
the definition of M(p) involves infinitely many cyclotomic polynomials, it is not clear
whether there exists a finite procedure to determine it. Duda [15] provided such a
procedure. It reduces the computation of M(p) to the determination of the maximum
value of A(n), with n running through a finite set of ternary integers pqr. As the n
involved are huge, the procedure is unfortunately not practical. It is a major open
problem to find a practical procedure leading to explicit values of M(p).

In 1971, Möller [35] gave a construction showing that M(p) ≥ (p + 1)/2 for p > 5.
On the other hand, in 1968, Sister Marion Beiter [5] had conjectured that M(p) ≤
(p+1)/2 and shown that M(3) = 2 [7], which on combining leads to the conjecture that
M(p) = (p + 1)/2 for p > 2. The bound of Möller together with Beiter’s [6] bound
M(5) ≤ 3 shows that M(5) = 3. Zhao and Zhang [47] showed that M(7) = 4. Thus
Beiter’s conjecture holds true for p ≤ 7. Gallot and Moree [21] showed that Beiter’s
conjecture is false for every p ≥ 11. Moreover, they showed that for every ϵ > 0 we have
M(p) ≥ (2/3 − ϵ)p and conjectured that always M(p) ≤ 2p/3, dubbing this conjecture
the “corrected Sister Beiter conjecture”.

The true behavior of M(p) is much more complicated than suggested by Beiter’s con-
jecture. For one, it is related to the distribution of inverses modulo primes p. Given any
integer a coprime to p, any integer b with ab ≡ 1(mod p) is its modular inverse. The
collection of points (a, b) with 0 < a, b < p is called the modular hyperbola; for a survey
see Shparlinski [42]. The distribution of points on the modular hyperbola is traditionally
investigated using the Kloosterman sum K(a, b; p), which is defined as

K(a, b; p) =
∑

1≤x≤p−1

e2πi(ax+bx)/p,

with x any modular inverse of x modulo p. (As an aside we note that the Dutch
word kloosterman means “cloister man” and thus the cloister man sums can be used
to investigate a conjecture of a nun. Honi soit qui mal y pense! Reader beware: too
intense study of these sums and their applications can lead to “Kloostermania” [34].)
By a fundamental result of Weil we have |K(a, b; p)| ≤ 2

√
p, which can be used to show

that M(p) > 2p/3− 3 p3/4 log p (see Cobeli et al. [12]).

In Figure 2 we display part of the modular hyperbola mod 241 that is relevant in
constructing a sharp lower bound for M(241) in the work of Gallot and myself. It
gives integer pairs (a, b) with 1 ≤ a, b ≤ 240 in certain triangles with ab ≡ 1(mod 241).
For a detailed analysis of this construction, see Cobeli et al. [12].
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Figure 2: M(241) estimation relevant part of modular hyperbola mod 241.

5 Our results on the possible maximum coefficient

In this section I finally return to Question 2.1 and discuss the recent progress made on
it in my paper with Kosyak, Sofos and Zhang [26]. It relies on a construction found by
Eugenia Roşu improving on an earlier construction by Gallot and myself. The original
formulation is quite lengthy, however for us the following watered down version will
do.

Theorem 5.1 (Moree and Roşu [38]). Let m ≥ 0 be an arbitrary integer and p ≥
4m2 + 2m + 3 be any prime. Then there exist primes q1, r1, q2, r2 such that Φpq1r1 and
Φpq1r1 have maximum coefficient (p− 1)/2−m, respectively (p+ 1)/2 +m.

This shows that the set of cyclotomic maximum coefficients we can obtain certainly
contains

R : =
{p− 1

2
−m : p is a prime, m ≥ 0, 4m2 + 2m+ 3 ≤ p

}
∪
{p− 1

2
+m : p is a prime, m ≥ 0, 4m2 + 2m+ 3 ≤ p

}
.

We conjecture that this set equals the set of all natural numbers, thus implying that
each natural number can arise as maximum coefficient of some cyclotomic polynomial.
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h p q

3 5 11
5 13 53
55 139 7507
117 263 30509
219 449 97883

Table 4: Smallest choice of p ≥ 2h− 1 with q := 1 + (h− 1)p prime

Roughly speaking R is a union of integers in intervals of the form ((p−1)/2−√
p/2, (p−

1)/2+
√
p/2), and thus if the gaps between successive primes are always sufficiently small,

all natural integers will be covered. Working out the technicalities one arrives at the
following result.

Theorem 5.2. If pn+1−pn <
√
pn+

√
pn+1 holds for pn ≤ 2h, then the integers 1, 2, . . . , h

are in R. Andrica’s conjecture, Conjecture 3.1, implies that every natural number occurs
as the maximum coefficient of some ternary cyclotomic polynomial.

A lot of numerical work on large gaps has been done (see the website [39]). This can
be used to infer that the inequality in Theorem 5.2 holds for pn ≤ 2 · 263 ≈ 1.8 · 1019,
leading to the following corollary.

Corollary 5.1. Every integer up to 9 · 1018 occurs as the maximal coefficient of some
ternary cyclotomic polynomial.

If holes in the set R appear, it is when pn+1−pn ≥ √
pn+

√
pn+1. The number of natural

numbers up to x that are not in R (if any), is close to∑
pn≤2x

dn≥
√
pn+

√
pn+1

(dn −
√
pn −

√
pn+1) ≤

∑
pn≤2x

dn≥
√
pn+

√
pn+1

dn ≤
∑
pn≤2x
dn≥

√
pn

dn.

Now the reader might be reminded of (3.2). An easy climb on the shoulders of giants in
analytic number theory then leads to the following result.

Theorem 5.3. For any fixed ϵ > 0, there exists a constant Cϵ such that the number of
positive integers ≤ x that do not occur as a height of a ternary cyclotomic polynomial is
at most Cϵx

3/5+ϵ. Under the Riemann Hypothesis this number is at most Cϵx
1/2+ϵ.
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5.1 A different approach

Let h > 1 be odd. If there exists a prime p ≥ 2h − 1 such that q := 1 + (h − 1)p is a
prime too, then for some prime r > q it can be shown that Φpqr has maximum coefficient
h. This is a consequence of work of Gallot, Moree and Wilms [22] and involves ternary
cyclotomic polynomials that are not optimal.

For some choices of h, p and q see Table 4.

Conjecture 5.4. Let h > 1 be any odd integer. There exists a prime p ≥ 2h− 1, such
that 1 + (h− 1)p is a prime too.

This conjecture is a consequence of the widely believed Bateman–Horn conjecture [1],
which implies that, given an arbitrary odd integer h > 1, there are infinitely many
primes p such that 1 + (h− 1)p is a prime too.

Theorem 5.5. If Conjecture 5.4 holds true, then every positive odd natural number
occurs as maximal coefficient of some ternary cyclotomic polynomial. Unconditionally
a positive fraction of all odd natural numbers occur as maxima.

Our proof of the second assertion makes use of deep work of Bombieri, Friedlander
and Iwaniec [8] on the level of distribution of primes in arithmetic progressions with
fixed residue and varying moduli. Although the unconditional statement in Theorem
5.5 is surpassed by the unconditional statement in Theorem 5.3, the proof of Theorem
5.5 is, in a way, ‘orthogonal’ to the one of Theorem 5.3; it thus has the potential of
working for variations of the problem where the method behind Theorem 5.3 would fail.
Interestingly, like our prime gap criterion, it rests on a variation of a certain very well
studied problem involving prime numbers. Both prime number questions are, however,
quite different.

6 Concluding remarks

In [26] we also obtain the same type of results as described in the previous section for
the minimum coefficient and for the height. In case of the height a conjecture slightly
stronger than Andrica’s enters the game.

Conjecture 6.1. Every natural number occurs as the height of some cyclotomic poly-
nomial.
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height p q r k sign diff.
1 3 7 11 0 + 2
2 3 5 7 7 − 3
3 5 7 11 119 − 5
4 11 13 17 677 − 7
5 11 13 19 1008 − 9
6 13 23 29 2499 − 10
7 17 19 53 6013 + 14
8 17 31 37 5596 − 14
9 17 47 53 14538 − 17

10 17 29 41 4801 − 17

Table 5: Minimal ternary examples with prescribed height

We demonstrate this in Table 5, which gives the minimum ternary integer n = pqr with
p < q < r such that Φn has height m for the numbers m = 1, . . . , 10. The integer k
has the property that apqr(k) = ±m, with the sign coming from the sixth column. The
seventh column records the difference between the largest and smallest coefficient and
is in bold if this is optimal, that is, if the difference equals p (compare Definition 4.2).
See [26] for the continuation of the table up to m = 40.

Prime differences make their appearance since in our approach we work with ternary
cyclotomic polynomials. One would want to work with Φn with n having at least four
prime factors; however, this leads to a loss of control over the behaviour of the coeffi-
cients in general and the maximum, minimum and height in particular. Prime number
properties play a true role if one asks for the possible heights A(n) and extrema of A{n}
with n restricted to ternary integers.

7 Further reading

Ribenboim’s book [41] gives a wealth of results on prime numbers and their distribution.
It can be thought of as a number-theoretical version of the Guinness Book of Records.
Also some of the underlying mathematics is explained. For a computational history of
prime numbers and Riemann zeros see [37]. The truly courageous might have a go at
the monumental book of Landau [28].
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Abstract: In this article, we reflect on our experiences in using Inquiry-Based
Learning (IBL) to teach undergraduate mathematics in an Indian classroom. This
pedagogy was implemented in first year courses, to ease the transition from school
to college mathematics. We discuss how we implemented IBL in our courses and
some of our observations, especially issues that we believe are more specific to
Indian classrooms.

1 Introduction

Inquiry-based learning (IBL) is a form of active learning, based on the Moore method.
The topologist RL Moore famously conducted courses without lectures or textbooks,
giving students a set of axioms and definitions, and then asking them to provide proofs
for various results without consulting any other resource, and present them to the class
for verification. Many credit this method for Moore’s success in identifying and guiding
fifty doctoral students and creating a flourishing school of topology, and his students have
described the strong positive impact the method had on their learning, their interest in
the subject and their self-confidence [9,10]. However, others warn of the difficulty
implementing the method in undergraduate classes where students cannot be “hand-
picked”, causing many to fall behind, as well as the tendency for a hostile or overly
competitive atmosphere to develop [2].

Over the years, mathematics teachers have used variations of this method to include
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students in the creation of mathematics, tweaking the method to suit their classrooms
and requirements. IBL grew (in North America) out of the legacy of RL Moore, but
many involved in its development brought in aspects of collaboration (forbidden by
Moore) and classroom inclusivity [1, 4].

Broadly, IBL courses are designed so that students mostly learn through activities,
exercises, presentations and discussions, rather than lectures. The instructor’s role is to
create material that challenges students at the right level, and to guide them through
the process of discovery. The instructor also gets an insight into how students learn
mathematics [6].

The undergraduate programme in mathematics at Azim Premji University uses IBL for
introductory first year courses. There were two broad reasons for this – to ease the tran-
sition into college mathematics, and to break down various barriers between students.
Many students who join our programme have primarily learnt mathematics through
rote learning and memorisation of algorithms, and also join with different ideas about
what mathematics means. We therefore wanted the introductory courses to emphasise
the practice of doing mathematics – playing with concepts and ideas, asking questions,
looking for examples, connecting ideas from different areas, justifying solutions, and then
communicating ideas to peers for feedback. These courses are also meant to prepare stu-
dents for second-year courses in linear algebra, abstract algebra, real and multivariable
analysis, and probability.

Additionally, we have a mix of students from different social, economic and academic
backgrounds, and wanted a classroom in which all students get to speak up without
fear, and experience the pleasure and power of collaborative work in maths. Existing
literature on IBL (mostly from North America) has indicated the positive impact of
the pedagogy on women students, and, to a lesser extent, on minority students, [7, 8]
and we hoped to see similar effects in our classrooms. We know of only a few other
uses of IBL by colleagues at other universities in India (like RIE Mysuru and Ashoka
University), and are not aware of any literature on the impacts.

This article is a collection of reflections from our experiences using IBL to teach first
year maths undergraduates at Azim Premji University over the last two years. The
number of students is too small for any kind of formal study. Further, the second year
saw a switch to online classes due to the pandemic, which lead to minor modifications.
Instead, we informally discuss the broad structure of the courses, some of the challenges
in implementation, and the impact it has had in our classrooms.
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2 Implementation

We primarily use IBL in two first-year courses – Introduction to Mathematical Thinking
1 and Calculus 1. The first course introduces some topics from combinatorics and number
theory. The second mainly deals with the structure of the real line, motivated by its
role in results from single-variable calculus that most students encounter in school. In
both courses, some notions of sets, functions, cardinality, and propositional logic are
introduced informally (and covered more rigorously in a later course).

Guided worksheets form the backbone of these two courses. For Calculus 1, we drew
heavily upon existing IBL courses by CA Coppin [3] and WT Ingram [5], which are
closer to Moore’s approach of starting with definitions and axioms. For the other course,
we created worksheets from scratch, and the problems started by asking students to play
around with questions about counting, divisibility etc. and tried to lead them to some
foundational notions in combinatorics and number theory, and to see the importance of
the language of sets and functions and the axiomatic method.

In both courses, students are not allowed to look up any books or resources. During
class, students present their solutions to their classmates. While a student is presenting,
others can ask doubts or express disagreement in a polite and constructive manner. If
a flaw is observed in the argument, the student presenting can decide if the mistake is
small and can be fixed in class, or to work on it and present in next class, or to pass
the question to another student. Other students are asked not to offer suggestions or
alternative solutions during a presentation. In one iteration, students were asked to keep
a weekly journal to log their progress and indicate which problems they were prepared to
present each class. When the courses were taught online, the class was split into smaller
sections of 12-15 students for greater individual attention.

Another significant difference between the two courses is in the way students solve the
worksheets. In Introduction to Mathematical Thinking 1, students work as groups, while
in Calculus 1 they are expected to work independently. These two courses therefore com-
plement each another in content (discrete and continuous structures) and mathematical
approach (building towards formality and starting from axioms), as well as approach to
collaboration.

Assessment was based on presentations, regular assignments, and tests. When assessing
presentations, instructors tried to value the development of ideas and sincere attempts
in wrong directions as well as correct proofs. We also found that weekly assignments
with detailed feedback on mathematics and writing were useful for students and gave
the instructor a better sense of how concepts being discussed in class were absorbed
by individuals. In some iterations, assignments consisted of writing up solutions for
only problems discussed in class, but we later found it necessary to include additional
problems of varying difficulty as well.
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2.1 The instructor’s role

After the problem sets are created, the instructor has several closely intertwined roles:
providing “big-picture” ideas, tweaking the material each week to suit the class, providing
academic guidance for each student, and monitoring the well-being of each student and
the general mood of the class.

Sometimes the whole class gets stuck, and the instructor needs to take a call on whether
to push the class to make progress, to put that particular topic or question aside for a
while, or to cover some material as a short lecture so the class can continue as planned.
In this, our aim of preparing students for second year courses in algebra, analysis, linear
algebra, probability etc. sometimes added constraints. A question that we grappled
with through these courses was about how open-ended inquiry can be when covering
core content. Our courses were leading students through a pre-planned narrative, and
the space available for diversions was limited. There were instances where students
wanted to take the course in a particular direction, and the instructor had to take a call
on how much that would disrupt the remainder of the course.

It is a foregone conclusion that we need to keep content to a minimum if we want to focus
on the process. It is also usually the case that the class has a natural pace, slowing down
when encountering a hard concept, and then suddenly speeding up when that concept
makes sense. However, there are some strategies through which the instructor can keep
the pace relatively steady – homework involving many examples when a difficult concept
is first encountered, one-on-one or small group tutorials when the class is stuck, putting
aside a very hard question for a week or two to build up momentum, and providing
perspectives on the concepts being discussed to keep the class motivated.

Instructors also assist students in carving out a path for their progress each week. While
all students are encouraged to work on all problems, the instructor may sometimes want
to ask a student to present in a particular class if they have not presented for a while, or
to nudge a student who has made many presentations in the direction of a hard problem.
In some sense IBL allows for multiple classes to be run together, with some students
mostly focusing on understanding concepts through examples, some also proving short
results that follow from definitions, and others finding creative proofs to more difficult
statements. A student may switch tracks for different courses or topics, and both they
and the instructor need to ensure the student is channeling their efforts in the right
direction each week. As students mature and learn more mathematics, they are able to
connect the explorations of the IBL course and their own learning.

Finally, all this is only possible when the class is committed to the rules of engagement –
everyone works hard at the problems, each solution is closely examined for correctness, no
one looks up solutions, no one feels intimidated about asking questions, and no question
is dismissed as trivial. Reflection exercises on the content and learning styles, sessions on
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diversity and inclusivity, conversations outside class about academic integrity, and so on,
help maintain such at atmosphere, but these ultimately only work when the instructor
can persuade students of the value of the pedagogy.

The tasks of the students and the instructor inside and outside class for an IBL course
involving group work are described below:

Inside class Outside class
Student 1. Discuss new problems in small

groups
1. Work on new problems individ-
ually or with the whole small group

2. Present solutions of the small
group to the whole class

2. Review solutions to previously
presented problems

3. Ask questions and critique solu-
tions presented by others

3. Work on weekly written assign-
ments (problems presented in class
and new problems)

4. Ensure participation by peers 4. Attend office hours or tutorials
to clarify concepts
5. Reflect on learning through jour-
nals and discussions

Instructor
1. Observe small groups and clarify
their questions, check everyone is
participating, note ideas, solutions,
and common difficulties

1. Design problem sheets and as-
sessments

2. Monitor presentations and direct
discussions, ensure all questions are
answered and errors are pointed out
(even if not resolved), note down
solutions

2. Conduct additional tutorials and
office hours, advise individual stu-
dents about their direction

3. Ensure a non-judgmental atmo-
sphere, resolve conflicts, find solu-
tions to lethargy or loss of motiva-
tion/confidence

3. Provide detailed feedback on
written work

4. Provide summaries, big-picture
ideas and short lectures as needed

4. Arrange discussion and feed-
back sessions on class dynamics, in-
clusivity, academic integrity, and
other issues that come up

Bulletin of the Mathematics Teachers’ Association (India)



68

3 What does an IBL class look like?

Ideally each worksheet should be designed so that every student struggles with the
material, but can make progress in at least one or two problems each week. The questions
and concepts that students seem to remember and appreciate best are those for which
multiple incorrect solutions are given and the discussion involves questions at various
levels. In this section, we describe a few examples to illustrate the process.

Counting the number of onto functions between two finite sets

The question was introduced as a word problem in both iterations of the course. In the
first iteration, students were asked in how many ways six houses can be painted using
three colours such that each house is painted using exactly one colour and all colours
are used. When the groups found this difficult, the number of colours was reduced to
two. Once students had the solution, they proceeded to solve the original problem by
making partitions. Students found it hard to generalise the solution, but were able to
frame it in terms of counting onto functions. In a subsequent worksheet on recursion, we
counted the number of k-partitions of a set with n elements. They were able to use this
to calculate the Stirling number of the second kind and use that to find the number of
onto functions. The class got used to the idea of using easy cases to frame the question
for the general case. By the end of the course, they were juggling between special and
general cases, and also using concepts from a different worksheet or course.

In a subsequent course, the question was framed as a teacher trying to assign three
questions to nine students so that each student is given exactly one problem, and no
question is left out. A few groups came up with the following argument: first assign each
problem to some student. This can be done in 9× 8× 7 ways. The remaining problems
can now be distributed in any way, bringing the total to 9 × 8 × 7 × 36. Another kind
of reasoning was that of the total of 39 possibilities, various cases need to be deleted –
those where one question is assigned to all students, those where of two questions, one
is assigned to one student, and the other to eight, those where of two question one is
assigned to two students and the other to seven, and so on. The mismatch in the final
numerical answers sparked further discussion.

As before, the groups were asked to look to modify the question with a smaller number of
students and questions, where the number of ways could be easily verified by hand, to see
if their reasoning held. This exercise clarified that the first argument was over-counting,
and also convinced students of the validity of the second. During the presentation of the
second, certain simplifications could also be made in the calculations. When we moved
on to the question of how to count the number of onto functions from one set to another,
some students also tried to return to the first technique and modify it, although this
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did not work out. The exercise served as a reminder of why one asks for rigorous proofs
and peer feedback even for small counting problems, and also how one can get useful
insights from incorrect arguments. The class then moved on to discussing the Stirling
number of the second kind, as above.

Coming up with a definition of convergence for sequences of real
numbers.

This was an ad hoc exercise given in one iteration of the calculus course, as students
were very keen on coming up with a definition after seeing that of a limit point of a set.
The exercise was drafted in a hurry, and therefore not very good: students were given
a set of sequences, told which ones diverged and which ones converged, with the limit
specified for converging sequences. They needed to find a definition that worked for all
these examples.

The initial attempts used ideas similar to monotonicity, but the class quickly agreed
that oscillating sequences can also converge. The next obstacle was that the class was
not convinced that constant sequences should “tend to” anything at all, after which the
instructor tried to motivate the definition through some uses of sequences. Following
this, the class produced various definitions inspired by that of a limit point of a set, such
as the range having exactly one limit point, and the range being bounded and having
exactly one limit point. Despite a valiant effort by the class, no satisfactory definition
could be come up with in the short time we had.

While this was an enjoyable exercise for students, it was a reminder for the instruc-
tor about the importance of motivating ideas and designing problems carefully around
them. For example, by motivating sequences through integrals or derivatives right at
the beginning, it might have been clear why we want constant sequences to converge.
Also, since coming up with such a definition is hard, it would also have been better to
have more scaffolding around the question.

GCD through paper folding and the jug problem

In this exercise, students were asked to go through the physical and mental exercise of
folding a rectangular sheet of paper about its shorter edge to form a square, and then
repeating the step for the remaining rectangle (if any) until no further folds are possible.
Students were asked to begin with rectangles with specific dimensions, and then asked
questions about whether the process always terminates, how many steps it takes, the
connection between the sides of the rectangle and the dimensions of the last square, and
so on.
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Nearly all students observed (without proof) that the process terminates if the sides
are natural numbers, and that the side of the final square is then the GCD of the
initial sides of the rectangle. A few could make rough arguments about the process
terminating when the sides are rational, and give some examples where it does not. A
few students, especially those who had studied some programming in school, were able
to write the steps as an algorithm, though some missed some minor points like what
happens if rectangle is a square to begin with. A further subset could also merge together
consecutive foldings along the same edge into one step to get the Euclidean algorithm
familiar to them from school. A large part of the class found the final exercise hard, and
no one was able to prove why the algorithm produced the GCD or why it terminated.
Many students talked about being able to “see” the idea but not prove it, which lead
the instructors to reflect on the distinction between proving something, seeing roughly
why something works without a proof, and believing something to be true through many
examples without having any idea about why it is true.

To aid this transition in understanding, we created a homework exercise asking students
to prove that (b, a) = (b− na, a) whenever n is a natural number for which b− na ≥ a,
and to connect this claim with the process of paper folding. One observation we could
make is that the many students who struggled to prove this could suddenly do so when
reminded about the definition of the GCD. Our guess is that their previous attempts
involved writing what they knew in the hope that something would come to light, rather
than directly applying the definition.

Proving that the process should terminate was even harder. Some were able to argue
that the process has to end as the sides of the rectangle are natural numbers and keeps
decreasing, and a few more could point out (the perhaps obvious fact) that this is
because 1 is the smallest natural number. Eventually only one or two could give a
complete and rigorous proof using the well-ordering principle or induction. We had a
similar experience with a problem about measuring out different quantities with two
jugs of different integer volumes. Seeing the notion of GCD in an unexpected context
was a good motivator, but mathematically framing and proving findings was hard for
most. In both cases, we saw an example of multiple classrooms within the same class,
with students wrestling with questions and sub-questions at various levels, and gaining
understanding in different ways.

4 Impact on students

We asked students to reflect on their learning at various points during the course. These
questions were about their comfort with different topics in maths, and about their learn-
ing and relationship with maths.
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For the first batch of fifteen students, anonymous surveys were conducted right before
and right after the semester, after students had completed two IBL courses. The surveys
indicated a small positive shift in the number of students who believe they can under-
stand difficult concepts with enough time. This was accompanied by a small decrease in
those who said they feel embarrassed or demotivated by mistakes. When asked about
this in an anonymous survey more than a year after the IBL courses ended, one student
said

I feel like I am a “mathematician” instead of feeling like I am solely trying
to learn mathematics from outside.

Another said

At university, I learned that being good at Math could mean much more than
snagging the first rank. The warmth of our classrooms here and the candid
conversations have slowly helped rebuild my confidence in the subject. I
truly value the openness with which we learn, furthermore, I appreciate the
encouragement we receive when we encounter new knowledge.

This person also talked a bit about women students sometimes being left out of discus-
sions in IBL classes, and being assigned “mindless work” like writing up solutions after
group-work. They concluded

IBL necessitates everyone’s participation, lecture-based classes do not. In
both class formats, I did experience gender-related discrimination, but I felt
like we could do something about it, make a positive change in the IBL
setup.

There was a significant increase in those who find one-on-one tutorials and activities,
demos, experiments useful. More worrying, there was a decrease in those who find
reading a textbook useful. In the anonymous survey mentioned above, one student
pointed out

I think IBL allowed me to follow lectures better but made it harder to read
textbooks and hence the second year courses became a bit harder because
we were not used to reading textbooks.

Another said “I feel like if we didn’t have IBL in first year, we would be more into
reading mathematical texts.” This was an unexpected consequence, that we are trying
to tackle through more readings.

These students also reported a higher level of comfort with topics from college than those
from school. Many more students said they could explain concepts in words, rather than
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just solve problems in them. Interestingly, those saying they are more comfortable with
complex numbers went up although these were not discussed in the courses.

For the second batch of thirty students, we conducted learning surveys three times
during the term, and these surveys were not anonymous. This was for an online version
of Introduction to Mathematical Thinking 1, and the main aim was for us to stay abreast
of students’ difficulties.

The surveys indicate a mostly positive impact of IBL on students’ learning and relation-
ship with maths. On the other hand, there were a few students negatively impacted by
the course or pedagogy, and we discuss possible reasons for this below. We also observed
an increase in self-reported sensitivity to others’ learning, as well as slight increases in
self-reported resilience, interest in maths and the ability to critique an argument. There
was also a slight decrease in confidence in mathematical abilities and grasp over basics.
In an anonymous survey conducted a few months after the two IBL courses ended, one
student said

I felt far more confident and certain of my journey in Mathematics after IBL,
particularly because I recognised that Maths is ‘messy’ so to speak. This
gave me the confidence to make mistakes, and learn from them, which in
turn helped me uncover some very cool things.

A particularly poignant comment was

I always had a fear with mathematics. So, I think it [hasn’t] increased my
confidence in maths for now. But it increased my interest towards mathe-
matics.

In informal discussions outside class, a few students also spoke about the positive impact
of having their ideas be acknowledged and listened to. One said

It made me independent while having fun. It made me realise that mathe-
matics is not about computation or calculation. The best part was that the
class and the teacher valued our ideas. We were happy when we had good
ideas and were happy when our classmates had new ideas.

We also tried to make informal observations about students’ progress in future non-
IBL courses, but this was partly hampered by the switch to online classes. One broad
observation was that IBL is helpful in motivating the language of sets and functions and
the need for rules of logic. It is, however, not a replacement for a introductory course
on sets, functions, logic and proof techniques.
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5 Language and logic

The one observation we made that did not seem to occur the literature we could find on
IBL is the impact of language. Our classes have students with various levels of familiarity
with English, and the problem sheets we shared did not fully take these disparities into
account. The small differences between spoken and mathematical language can throw
off even students who speak English as a first language (for example, a common attempt
at defining a function being one-to-one is to say each point maps to a unique point).

One of many aims of these courses was to motivate the rules of propositional and pred-
icate logic. It seemed, however, that students who are more comfortable with English
have quite an advantage here. As an example, many students observe soon that negation
switches around “for all” and “there exists”. Those comfortable in English will also im-
mediately identify the many phrases synonymous with “there exists” – not every, there
is at least one, in some instance etc. When they mechanically negate “For all x, there
exists y such that...” they know that “There exists x, for all y such that...” is grammati-
cally problematic and make the necessary tweaks. Therefore, again, people with similar
mathematical understanding face different levels of difficulty because of their comfort
with English.

This seemed a greater problem in the calculus course, which begins formally with a set
of axioms and definitions. We would therefore like to try changing the direction of that
course, so that students begin with concrete questions, and move towards abstraction. It
might also be that such a course works better in the second semester, when students have
spent more time in college where all classes and many conversations are in English.

When asked about the question of language in the surveys mentioned earlier, students
did not talk about the language of the worksheets, but a few did talk about challenges
faced during discussions. One person said

Yes, I felt that the background affected our learning. Some who knew better
English, or had a better school education was able to answer the questions
quicker, and that got my confidence a bit down. I was truly interested in
solving through IBL but the rest of the students’ pace seemed to affect some
of us. But even in lecture based courses, I felt that the same issue still
prevailed. It was not more in IBL than otherwise.

Another said

In the lecture based classes they used to teach or explain problems on [the]
board, so we can understand by seeing the mathematical terms. So, here
don’t need to know much in language. In IBL we need to present problems,
so here language matters.
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Discrepancies may arise in any classroom due to comfort with English, but there are
ways in which it can be more stark in IBL classes. This was an observation we mostly
made when courses were online, so that may also have exacerbated the problem. Nev-
ertheless, we intend to modify the worksheets considerably in the future based on these
experiences.

6 Instructor experience and learning

As we wrote a first draft of this, each of us, independent of the other two, described the
instructor experience as “frustrating but rewarding”. While this might be true of any
class, the sentiment was stronger in IBL courses. The main sources of frustration were
a lack of control over pace, and having to restrain ourselves from interfering instead of
allowing the class make mistakes and discover them slowly.

The most rewarding aspect was witnessing the close bond that students form with one
another through the process. This pedagogy demands a lot of intellectual and emotional
maturity from students – presenting a solution that that they have worked on for a week,
which is very likely to be wrong, sitting still and listening when they think they have
a much better argument, finding constructive and supportive ways of highlighting a
mistake, taking feedback and working and reworking the same solution. It is a privilege
to watch these processes take place. Further, we are asking students to be creative and
self-driven, so we need to find ways to critique the ideas they present while ensuring
that the person remains motivated enough to go back and work on fixing any errors. We
believe this has made us more patient and mindful of how we give feedback.

Additionally, as others like Rasmussen and Kwon [6] have observed, these courses have
also given us some insights into how students learn: which are the hard concepts, what
are the likely sources of confusion. We have described some instances in sections 4 and
6 above, but there were several others that stood out. For example, an exercise count-
ing the number of paths in a grid highlighted the problem of some standard formulas
in permutations and combinations being memorised without questioning their mean-
ing. Another exercise in calculus about defining the dictionary order on the plane with
polar coordinates, was a reminder to the instructor and students about how there is
a lot to understand about trigonometric functions and their inverses behind standard
conventions and formulas.

Implementing IBL in Indian colleges can be hard for many reasons including large classes,
and standardised syllabi and assessment, but, given the positive impacts, it seems a
worthwhile exercise to look for spaces in which it can be implemented. We would like to
continue the practice of IBL and understand it better through documentation, discussion
and dissemination of IBL material.

Blackboard, Issue 4 Table of Contents



75

Bibliography

[1] H Bennet, Inquiry based learning, Notices of the American Mathematical So-
ciety, Vol 66, No 7, 2019.

[2] DW Cohen, A modified Moore Method for teaching undergraduate mathematics,
The American Mathematical Monthly, Vol 89, No 7, 1982.

[3] CA Coppin, Linear point set theory, Journal of Inquiry-Based Learning, No 14,
2009.

[4] Z Haberler, SL Laursen and CN Hayward, What’s in a name? Framing strug-
gles of a mathematics education reform community, International Journal of
Research in Undergraduate Mathematics Education, 2018.

[5] WT Ingram, Foundations of Calculus: Properties of the Real Numbers, Func-
tions and Continuity, Journal of Inquiry-Based Learning, No 11, 2009.

[6] C Rasmussen and ON Kwon, An inquiry-oriented approach to undergraduate
mathematics, The Journal of Mathematical Behavior, 26(3), 189-194, 2007.

[7] SL Laursen, M-L Hassi, M Kogan, A Hunter, and T Weston, Evaluation of the
IBL Mathematics Project: Student and instructor outcomes of inquiry-based
learning in college mathematics, Colorado University, 2011.

[8] SL Laursen, M-L Hassi, M Kogan, and T Weston, Benefits for women and
men of inquiry-based learning in college mathematics: a multi-institution study,
Journal for Research in Mathematics Education, Vol 45, No 4, 2014.

[9] LS Whyburn, Student oriented teaching – the Moore method, The American
Mathematical Monthly, Vol 77, No 4, 1970.

[10] DE Zitarelli, The origin and early impact of the Moore nethod, The American
Mathematical Monthly, Vol 111, No. 6, 2004.

Bulletin of the Mathematics Teachers’ Association (India)
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Euclid’s proof of the statement that there exist infinitely many prime numbers is ex-
tremely well known these days, even at the school level. Though it is most often presented
as a proof by contradiction, there are other ways of writing it. Here is one such.

Theorem 1. There exist infinitely many prime numbers.

Euclid’s proof. We re-cast the theorem as follows:

Given any finite list of prime numbers, one may extend the list by including
more primes in it.

Given any finite list S = {q1, q2, . . . , qn} of prime numbers (note that they do not have
to be the first n primes), Euclid’s idea is to consider the number A defined as follows,

A = q1q2 · · · qn + 1. (1)

Observe that A exceeds all the qi’s, and also that A is not divisible by any of the qi
(i = 1, 2, . . . , n). We now ask: What type of number is A? Is it prime? Is it composite?
If A is prime, then we replace S by S ∪{A}, and we have accomplished our task. If not,
then A has some prime factor p, and this prime number cannot be any of the qi. In this
case, we replace S by S ∪ {p}, and once again we have accomplished our task. As this
step can be repeated as often as we wish, there must exist infinitely many primes. �
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Remark 1. This proof is so well-known that we may not appreciate how beautiful it is!
Observe the economy with which it accomplishes what it sets out to do. Faced with the
task of proving that there exist infinitely many prime numbers, a more natural strategy
would perhaps be: given the first n prime numbers p1, p2, . . . , pn, find the next prime
number pn+1. (This is the classic “find the next term” problem.) If Euclid had decided
that this was the way to proceed, he would probably not have gotten very far, and the
whole history of mathematics might have been very different! As it happens, no one has
succeeded in finding a proof along such lines even 23 centuries after Euclid.

In [1], G H Hardy has this classic and beautiful comment on Euclid’s theorem (he refers
to two theorems in the quote; the other one is the claim that the square root of 2 is
irrational):

I will state and prove two of the famous theorems of Greek mathematics.
They are ‘simple’ theorems, simple both in idea and in execution, but there
is no doubt at all about their being theorems of the highest class. Each is as
fresh and significant as when it has discovered—two thousand years have not
written a wrinkle on either of them …

Remark 2. In most presentations of the above proof, S is taken to be the set of the first
n primes, i.e., S = {p1, p2, . . . , pn}, where pi is the i-th prime (p1 = 2, p2 = 3, p3 = 5,
…). Forming the number A = p1p2 · · · pn + 1 in the usual manner, let p be the smallest
prime factor of A. It is important here to point out that p is not necessarily the next
prime after pn. For example:

• For n = 2 we get A = (2 · 3) + 1 = 7, which is a prime number, so p = 7. Note
that 7 is not the next prime number after 3.

• For n = 3 we get A = (2 · 3 · 5) + 1 = 31, which again is prime, so p = 31. Note
that 31 is not the next prime number after 5.

• For n = 4 we get A = (2 · 3 · 5 · 7) + 1 = 211, which yet again is prime, so p = 211.
Note that 211 is not the next prime number after 7.

• For n = 5 we get A = (2 · 3 · 5 · 7 · 11) + 1 = 2311, which yet again is prime, so
p = 2311. Note that 2311 is not the next prime number after 11.

Looking at these statements, we may be tempted to suppose that A will always be prime.
But this is not the case! Indeed, the first counterexample is found at the very next step.
Thus, for n = 6 we get A = (2 · 3 · 5 · 7 · 11 · 13) + 1 = 30031, and this is not prime:
30031 = 59 · 509.

The numbers p1p2 · · · pn + 1 (for n = 1, 2, 3, . . .) are known as the Euclidean numbers;
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see [2], [3]. Here is the sequence of such numbers:
3, 7, 31, 211, 2311, 30031, 510511, 9699691, 223092871, . . .

As of now, it is unknown whether or not this sequence contains infinitely many primes.
After 2311, which is the 5-th number in the sequence, the next prime turns out to be
the 11-th number, and after that it is the 75-th number! The extreme irregularity of
occurrence of primes in this sequence is another illustration of the fact that the primes
harbour very deep secrets which are revealed only occasionally (and perhaps reluctantly!)
to mathematicians.

Variations on a theme: applications of Euclid’s method

The strategy used by Euclid can be put to use to prove more such results, and that is
what this article is all about.

Theorem 2. There exist infinitely many prime numbers of the form −1 (mod 4).

Proof. Given any finite list S = {q1, q2, . . . , qn} of prime numbers all of the form
−1 (mod 4), we show how to extend the list by considering the following number A:

A = 4q1q2 · · · qn − 1. (2)
Observe: (i) A is not divisible by any of the qi, and (ii) A ≡ −1 (mod 4). Also observe
that the product of primes all of the form 1 (mod 4) is again of this form, so A must
have at least one prime factor p of the form −1 (mod 4). This prime number cannot be
any of the qi. So we may replace S by S ∪ {p}, and we have accomplished our task. As
this step can be repeated as often as we wish, there must exist infinitely many primes
of the stated form. �

Theorem 3. There exist infinitely many prime numbers of the form −1 (mod 3).

Proof. Given any finite list S = {q1, q2, . . . , qn} of prime numbers all of the form
−1 (mod 3), we consider the following number A:

A = 3q1q2 · · · qn − 1. (3)
Observe: (i) A is not divisible by any of the qi, and (ii) A ≡ −1 (mod 3). Also observe
that the product of primes all of the form 1 (mod 3) is again of this form, so A must
have at least one prime factor p of the form −1 (mod 3). This prime number cannot be
any of the qi. So we replace S by S ∪ {p}, and we have accomplished our task. �

This proof can obviously be mimicked to establish the following result (and others of its
kind):
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Theorem 4. There exist infinitely many prime numbers of the form −1 (mod 6).

Can this style of proof be used to prove that there exist infinitely many primes of the
form 1 (mod 4)? The obvious approach fails; for, if we consider a list S = {q1, q2, . . . , qn}
of primes all of the form 1 (mod 4), and then construct the following number A,

A = 4q1q2 · · · qn + 1, (4)

we are not now able to claim that A must have a prime factor of the form 1 (mod 4).
This is because the product of an even number of prime numbers of the form −1 (mod 4)
will be of the form 1 (mod 4). Therefore, some other strategy is required.

Success is close at hand, however; only, it needs prior knowledge of these facts: (i) −1
is a quadratic residue of all prime numbers of the form 1 (mod 4), (ii) −1 is not a
quadratic residue of any prime number of the form −1 (mod 4), and therefore, (iii) the
prime factors of a number of the form 4x2 + 1 are all of the form 1 (mod 4).

Theorem 5. There exist infinitely many prime numbers of the form 1 (mod 4).

Proof. Given any finite list S = {q1, q2, . . . , qn} of prime numbers all of the form
1 (mod 4), we consider the following number A:

A = 4(q1q2 · · · qn)2 + 1. (5)

Since A is of the form 4x2 +1, each prime factor p of A must be of the form 1 (mod 4).
Since, trivially, p cannot be any of the qi, we replace the set S by S ∪ {p}, and we have
accomplished what we need to do. The stated claim follows. �

How far can we go in this direction? How many such results can we establish using this
style of proof? The most general result of this family of results is the famous theorem
proved by Dirichlet:

Theorem 6 (Dirichlet). Given any pair of co-prime integers a, b, with b > 1, there exist
infinitely many prime numbers of the form a (mod b).

Given the extreme generality of this statement, we may expect that it is difficult to
prove. And this is indeed the case; see [4], [5]. So there is no question of finding a
Euclid-style proof of this theorem!

In the other direction, there is the following very remarkable theorem proved by Murty
[7]:
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Theorem 7 (Murty). A “Euclidean proof” exists for the arithmetic progression a (mod b)
if and only if a2 ≡ 1 (mod b).

For more on this theme, we recommend references [6] and [7]. See also [8] for another
Euclidean-style result.
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Can the beautiful proof of the infinitude of primes due to Euclid’s school be generalized?
An article by Shailesh Shirali in this issue discusses Euclid’s proof and its generalizations.
It also points out the limitations to the cases to which the proof applies. It is natural to
wonder if it can be generalized by taking a slightly general point of view. For instance,
can we have a generalization that would show there are infinitely many prime numbers
such as 11, 31, 41, 61, 71 whose last digit is 1? Indeed, this can be done. In simple terms,
one might say that Euclid’s proof considers the values of the polynomial x + 1 and the
generalization we discuss will look at a more general polynomial. However, it is not
completely elementary and needs a ‘little’ bit of help from Fermat.

Consider the polynomial
f(x) = x4 − x3 + x2 − x+ 1.

The first five primes whose last digit is 1 are 11, 31, 41, 61, 71. Imitating Euclid’s proof,
we consider the product of the first n ≥ 5 primes p1, p2, · · · , pn with last digit 1. For
convenience (later, it will become clearer why), we also multiply by 10 and look at
the natural number a = 10p1p2 · · · pn. We will show that the natural number f(a) =
a4 − a3 + a2 − a + 1 is divisible by a prime whose last digit is 1. Note that f(a) itself
has the last digit to be 1. In fact, we will do better and show that ANY prime divisor
of f(a) has 1 as its last digit. This is the reason that we multiply by 10 also – we will
see why later.

Firstly, it is clear that f(a) > 1 and, therefore, does have a prime divisor p say. Now

p|(a4 − a3 + a2 − a+ 1)|(a5 + 1)|(a10 − 1).

83



84

We will show that the smallest positive integer d for which p divides ad − 1 must be 10.
Let us call this smallest d as the “order of a with respect to the modulus p”.

Now, d must divide 10 because if we write 10 = qd+ r with 0 ≤ r < d, then

a10 − 1 = aqd+r − ar + ar − 1 = ar(aqd − 1) + (ar − 1)

being a multiple of p implies ar − 1 is a multiple of p - we have used the fact that aqd− 1
is a multiple of p. This would contradict the choice of d as the smallest for that property
unless r = 0. So, d|10 and the choices for d are 1, 2, 5, 10.

If d = 1, then p divides a− 1 but p also divides f(a) = a3(a− 1) + a(a− 1) + 1, which
is impossible.

If d = 2, then p|(a2 − 1) = (a− 1)(a+ 1) and hence p|(a+ 1). But, as p divides

a4 − a3 + a2 − a+ 1 = (a4 + a3)− (2a3 + 2a2) + (3a2 + 3a)− (4a+ 4) + 5

= (a+ 1)(a3 − 2a2 + 3a− 4) + 5,

p must divide 5. But p 6= 5 as f(a) ends in 1.

If d = 5, then p|(a5 − 1) but p|f(a)|(a5 + 1). Thus, p = 2, which is also not possible as
f(a) is odd.

Therefore, we have proved that 10 is the order of a for the modulus p.

At this juncture, we require that ‘little’ help from Fermat - the so-called little theorem
of Fermat. It asserts for any prime q and any integer b that is not divisible by q that
bq−1− 1 is a multiple of q. Incidentally, Fermat’s assertion follows immediately from the
assertion that q divides up − u for ANY positive integer u which, in turn, easily follows
by induction on u. Returning to our p and a, note that p is relatively prime to 10 as
f(a) = 1+ a multiple of 10 – this is the reason we multiplied by 10 earlier. Thus, we
have that ap−1 − 1 is divisible by p. As we know that 10 is the order of a, the argument
used earlier above shows that 10 must divide p− 1 (indeed, if not, p would divide ar − 1
where r is the reminder when p− 1 is divided by 10). Thus, p ends in 1. As p must be
different from any of the prime factors of a, it is a new prime ending in 1. The proof is
complete.

Now, the moment has arrived when we should reveal the magic – how one thought of
the polynomial f(x). Euclid’s proof is the case f(x) = x+1. For our situation, we need
to look at the polynomial x10 − 1 and find its largest degree factor which turns out to
be our f(x). Thus, the above argument carries over verbatim to show that for every
positive integer d, there is a Euclid-like argument to prove there are infinitely many
prime numbers which leave reminder 1 when divided by d.
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9 Poly-folly

Kanakku Puly

Dikzihw: “Hello Professor, I have a question about polynomials.”

Rehcaet: “Yes? What is it?”

Dikzihw: “I thought polynomials are very simple objects. But, I am in a quandary,
being unable to decide if a function of two variables which is a polynomial in each
variable must itself be a polynomial.”

Rehcaet: “That is a nice question, and you know that such questions usually have a
negative answer. You may recall the famous example of the function f(x, y) = xy/(x2+
y2) for (x, y) 6= (0, 0) and f(0, 0) = 0 that is continuous in each of the real variables x, y
but not continuous as a function of two variables. I expect that the polynomial question
also has a negative answer.”

Dikzihw: “I understand but might these not be very different questions?”

Rehcaet: “That is true. Ok, let me think a little.”

(After a very short time) “Ok, I would like to correct myself; the answer for polynomials
is yes. Here is an argument.”

“For each fixed b ∈ R, suppose f(x, b) is a polynomial; then, it is a finite R-linear com-
bination of the polyonmials fn(x) = x(x− 1) · · · (x−n+1). Write f(x, b) =

∑
n bnfn(x)

where bn’s are real numbers depending on b; they are uniquely determined because
fn(x)’s are linearly independent as n varies. Thus, we have functions bn : R → R such
that for all x, y ∈ R,

f(x, y) =
∞∑
n=0

fn(x)bn(y).

Now, for each b, one has bn(b) = 0 for large enough n onwards, as f(x, b) is a polynomial.
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But, for each positive integer N , we have then

f(N, y) =
N∑

n=0

fn(N)bn(y) =
N∑

n=0

N(N − 1) · · · (N − n+ 1)bn(y).

As f(N, y) is a polynomial in y by assumption, it follows by induction on n that bn(y)
is a polynomial. We will see that bn must be the zero polynomial for all large enough n.
If not, there are infinitely many n for which bn(y) is a non-zero polynomial. But then
the zeroes of these polynomials form a countable set. However, we already observed
that for each real b, the polynomials bn(b) = 0 for all but finitely many n, thereby im-
plying that we have uncountably many zeroes of these non-zero polynomials bn. This
contradiction shows that the bn’s are zero polynomials from some n onwards; hence
f(x, y) =

∑
n fn(x)bn(y) is itself a polynomial.”

Dikzihw: “That is a nice proof, thank you. But, is this true for polynomials over
rational numbers too?”

Rehcaet: (hesitantly) “I expect that would also be true. Why not take it as a homework
problem and let me know tomorrow.”

(Next day:)
Rehcaet: “Well, were you able to prove it over Q? I expect it is true.”

Dikzihw: “Indeed, I was able to answer the question over Q; however, the answer is
‘No’!”

“Here is an example.”

“Let us enumerate the rational numbers as t1, t2, t3, · · · Consider the polynomials pn(x) =∏n
i=1(x − ti) for n ≥ 1. Notice that the functions f(tr, y) =

∑r−1
n=1 pn(tr)pn(y) and

f(x, tr) =
∑r−1

n=1 pn(x)pn(tr) are polynomials of degree r − 1 as pk(tr) = 0 for all k ≥ r.
I claim that

f(x, y) =
∞∑
n=1

pn(x)pn(y)

is not a polynomial. If it were a polynomial of total degree d say, then f(x, td+2) would
have degree at the most d but it has degree d + 1 as we observed above. Therefore,
f(x, y) is not a polynomial.”

Rehcaet: “Surprise surprise! I am glad that you didn’t just meekly accept what I
asserted. By the way, going back to the original example of the discontinuous function,
here is a nice exercise.”
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If a, b, c, d are positive integers, consider the function f(x, y) =
xayb

x2c + y2d
for (x, y) 6=

(0, 0) and f(0, 0) = 0. What are the possible values of a, b, c, d when f is discontinuous?

Dikzihw: “I have a wonderful solution but this space isn’t enough to write it down.”
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