INSTRUCTIONS

1. Use of mobile phones, smartphones, iPads, calculators, programmable wrist watches is STRICTLY PROHIBITED. Only ordinary pens and pencils are allowed inside the examination hall.
2. The correction is done by machines through scanning. On the OMR Sheet, darken bubbles completely with a black or blue ball pen. Please DO NOT use a pencil or a gel pen. Darken the bubbles completely, only after you are sure of your answer; else, erasing may lead to the OMR sheet getting damaged and the machine may not be able to read the answer. .
3. The name, email address, and date of birth entered on the OMR sheet will be your login credentials for accessing your score.
4. Incompletely, incorrectly or carelessly filled information may disqualify your candidature.
5. Each question has a one or two digit number as answer. The first diagram below shows improper and proper way of darkening the bubbles with detailed instructions. The second diagram shows how to mark a 2 -digit number and a 1 -digit number.
```
INSTRUCTIONS
1. "Think before your ink
2. Marking should be done with Blue/Black Ball Point Pen only.
3. Darken only one circle for each question as shown in
    Example Below.
    WWRONG METHODS 
4. If more than one circle is darkened or if the response is
    marked in any other way as shown "WRONG" above, it shall
    be treated as wrong way of marking.
5. Make the marks only in the spaces provided.
6. Carefully tear off the duplicate copy of the OMR without
    tampering the Original
    Please do not make any stray marks on the answer sheet.
```


6. The answer you write on OMR sheet is irrelevant. The darkened bubble will be considered as your final answer.
7. Questions 1 to 10 carry 2 marks each; questions 11 to 20 carry 3 marks each; questions 21 and 30 carry 5 marks each.
8. All questions are compulsory.
9. There are no negative marks.
10. Do all rough work in the space provided below for it. You also have blank pages at the end of the question paper to continue with rough work.
11. After the exam, you may take away the Candidate's copy of the OMR sheet.
12. Preserve your copy of OMR sheet till the end of current olympiad season. You will need it later for verification purposes.
13. You may take away the question paper after the examination.

Note:

1. \mathbb{N} denotes the set of all natural numbers, $1,2,3, \ldots$.
2. For a positive real number x, \sqrt{x} denotes the positive square root of x. For example, $\sqrt{4}=+2$.
3. Unless otherwise specified, all numbers are written in base 10.

Questions

1. Let n be a positive integer such that $1 \leq n \leq 1000$. Let M_{n} be the number of integers in the set $X_{n}=\{\sqrt{4 n+1}, \sqrt{4 n+2}, \ldots, \sqrt{4 n+1000}\}$. Let

$$
a=\max \left\{M_{n}: 1 \leq n \leq 1000\right\}, \text { and } b=\min \left\{M_{n}: 1 \leq n \leq 1000\right\} .
$$

Find $a-b$.
2. Find the number of elements in the set

$$
\left\{(a, b) \in \mathbb{N}: 2 \leq a, b \leq 2023, \log _{a}(b)+6 \log _{b}(a)=5\right\}
$$

3. Let α and β be positive integers such that

$$
\frac{16}{37}<\frac{\alpha}{\beta}<\frac{7}{16} .
$$

Find the smallest possible value of β.
4. Let x, y be positive integers such that

$$
x^{4}=(x-1)\left(y^{3}-23\right)-1 .
$$

Find the maximum possible value of $x+y$.
5. In a triangle $A B C$, let E be the midpoint of $A C$ and F be the midpoint of $A B$. The medians $B E$ and $C F$ intersect at G. Let Y and Z be the midpoints of $B E$ and $C F$ respectively. If the area of triangle $A B C$ is 480 , find the area of triangle $G Y Z$.
6. Let X be the set of all even positive integers n such that the measure of the angle of some regular polygon is n degrees. Find the number of elements in X.
7. Unconventional dice are to be designed such that the six faces are marked with numbers from 1 to 6 with 1 and 2 appearing on opposite faces. Further, each face is colored either red or yellow with opposite faces always of the same color. Two dice are considered to have the same design if one of them can be rotated to obtain a dice that has the same numbers and colors on the corresponding faces as the other one. Find the number of distinct dice that can be designed.
8. Given a 2×2 tile and seven dominoes (2×1 tile), find the number of ways of tiling (that is, cover without leaving gaps and without overlapping of any two tiles) a 2×7 rectangle using some of these tiles.

SPACE FOR ROUGH WORK

9. Find the number of triples (a, b, c) of positive integers such that
(a) $a b$ is a prime;
(b) $b c$ is a product of two primes;
(c) $a b c$ is not divisible by square of any prime and
(d) $a b c \leq 30$.
10. The sequence $\left\langle a_{n}\right\rangle_{n \geq 0}$ is defined by $a_{0}=1, a_{1}=-4$ and $a_{n+2}=-4 a_{n+1}-7 a_{n}$, for $n \geq 0$. Find the number of positive integer divisors of $a_{50}^{2}-a_{49} a_{51}$.
11. A positive integer m has the property that m^{2} is expressible in the form $4 n^{2}-5 n+16$ where n is an integer (of any sign). Find the maximum possible value of $|m-n|$.
12. Let $P(x)=x^{3}+a x^{2}+b x+c$ be a polynomial where a, b, c are integers and c is odd. Let p_{i} be the value of $P(x)$ at $x=i$. Given that $p_{1}^{3}+p_{2}^{3}+p_{3}^{3}=3 p_{1} p_{2} p_{3}$, find the value of $p_{2}+2 p_{1}-3 p_{0}$.

SPACE FOR ROUGH WORK
13. The ex-radii of a triangle are $10 \frac{1}{2}, 12$ and 14 . If the sides of the triangle are the roots of the cubic $x^{3}-p x^{2}+q x-r=0$, where p, q, r are integers, find the integer nearest to $\sqrt{p+q+r}$.
14. Let $A B C$ be a triangle in the $x y$ plane, where B is at the origin $(0,0)$. Let $B C$ be produced to D such that $B C: C D=1: 1, C A$ be produced to E such that $C A: A E=1: 2$ and $A B$ be produced to F such that $A B: B F=1: 3$. Let $G(32,24)$ be the centroid of the triangle $A B C$ and K be the centroid of the triangle $D E F$. Find the length $G K$.
15. Let $A B C D$ be a unit square. Suppose M and N are points on $B C$ and $C D$ respectively such that the perimeter of triangle $M C N$ is 2 . Let O be the circumcentre of triangle $M A N$, and P be the circumcentre of triangle $M O N$. If $\left(\frac{O P}{O A}\right)^{2}=\frac{m}{n}$ for some relatively prime positive integers m and n, find the value of $m+n$.
16. The six sides of a convex hexagon $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ are colored red. Each of the diagonals of the hexagon is colored either red or blue. If N is the number of colorings such that every triangle $A_{i} A_{j} A_{k}$, where $1 \leq i<j<k \leq 6$, has at least one red side, find the sum of the squares of the digits of N.

SPACE FOR ROUGH WORK

17. Consider the set

$$
\mathcal{S}=\{(a, b, c, d, e): 0<a<b<c<d<e<100\}
$$

where a, b, c, d, e are integers. If D is the average value of the fourth element of such a tuple in the set, taken over all the elements of \mathcal{S}, find the largest integer less than or equal to D.
18. Let \mathcal{P} be a convex polygon with 50 vertices. A set \mathcal{F} of diagonals of \mathcal{P} is said to be minimally friendly if any diagonal $d \in \mathcal{F}$ intersects at most one other diagonal in \mathcal{F} at a point interior to \mathcal{P}. Find the largest possible number of elements in a minimally friendly set \mathcal{F}.
19. For $n \in \mathbb{N}$, let $P(n)$ denote the product of the digits in n and $S(n)$ denote the sum of the digits in n. Consider the set

$$
A=\{n \in \mathbb{N}: P(n) \text { is non-zero, square free and } S(n) \text { is a proper divisor of } P(n)\} .
$$

Find the maximum possible number of digits of the numbers in A.
SPACE FOR ROUGH WORK
20. For any finite non empty set X of integers, let $\max (X)$ denote the largest element of X and $|X|$ denote the number of elements in X. If N is the number of ordered pairs (A, B) of finite non-empty sets of positive integers, such that

$$
\begin{aligned}
\max (A) \times|B| & =12 ; \text { and } \\
|A| \times \max (B) & =11
\end{aligned}
$$

and N can be written as $100 a+b$ where a, b are positive integers less than 100 , find $a+b$.
21. For $n \in \mathbb{N}$, consider non-negative integer-valued functions f on $\{1,2, \ldots, n\}$ satisfying $f(i) \geq f(j)$ for $i>j$ and $\sum_{i=1}^{n}(i+f(i))=2023$. Choose n such that $\sum_{i=1}^{n} f(i)$ is the least. How many such functions exist in that case?
22. In an equilateral triangle of side length 6 , pegs are placed at the vertices and also evenly along each side at a distance of 1 from each other. Four distinct pegs are chosen from the 15 interior pegs on the sides (that is, the chosen ones are not vertices of the triangle) and each peg is joined to the respective opposite vertex by a line segment. If N denotes the number of ways we can choose the pegs such that the drawn line segments divide the interior of the triangle into exactly nine regions, find the sum of the squares of the digits of N.

SPACE FOR ROUGH WORK

23. In the coordinate plane, a point is called a lattice point if both of its coordinates are integers. Let A be the point $(12,84)$. Find the number of right angled triangles $A B C$ in the coordinate plane where B and C are lattice points, having a right angle at the vertex A and whose incenter is at the origin $(0,0)$.
24. A trapezium in the plane is a quadrilateral in which a pair of opposite sides are parallel. A trapezium is said to be non-degenerate if it has positive area. Find the number of mutually non-congruent, non-degenerate trapeziums whose sides are four distinct integers from the set $\{5,6,7,8,9,10\}$.
25. Find the least positive integer n such that there are at least 1000 unordered pairs of diagonals in a regular polygon with n vertices that intersect at a right angle in the interior of the polygon.

SPACE FOR ROUGH WORK
26. In the land of Binary, the unit of currency is called Ben and currency notes are available in denominations $1,2,2^{2}, 2^{3}, \ldots$ Bens. The rules of the Government of Binary stipulate that one can not use more than two notes of any one denomination in any transaction. For example, one can give a change for 2 Bens in two ways: 2 one Ben notes or 1 two Ben note. For 5 Ben one can give 1 one Ben note and 1 four Ben note or 1 one Ben note and 2 two Ben notes. Using 5 one Ben notes or 3 one Ben notes and 1 two Ben notes for a 5 Ben transaction is prohibited. Find the number of ways in which one can give change for 100 Bens, following the rules of the Government.
27. A quadruple (a, b, c, d) of distinct integers is said to be balanced if $a+c=b+d$. Let \mathcal{S} be any set of quadruples (a, b, c, d) where $1 \leq a<b<d<c \leq 20$ and where the cardinality of S is 4411. Find the least number of balanced quadruples in \mathcal{S}.
28. On each side of an equilateral triangle with side length n units, where n is an integer, $1 \leq n \leq 100$, consider $n-1$ points that divide the side into n equal segments. Through these points, draw lines parallel to the sides of the triangle, obtaining a net of equilateral triangles of side length one unit. On each of the vertices of these small triangles, place a coin head up. Two coins are said to be adjacent if the distance between them is 1 unit. A move consists of flipping over any three mutually adjacent coins. Find the number of values of n for which it is possible to turn all coins tail up after a finite number of moves.

SPACE FOR ROUGH WORK

29. A positive integer $n>1$ is called beautiful if n can be written in one and only one way as $n=a_{1}+a_{2}+\cdots+a_{k}=a_{1} \cdot a_{2} \cdots a_{k}$ for some positive integers $a_{1}, a_{2}, \ldots, a_{k}$, where $k>1$ and $a_{1} \geq a_{2} \geq \cdots \geq a_{k}$. (For example 6 is beautiful since $6=3 \cdot 2 \cdot 1=3+2+1$, and this is unique. But 8 is not beautiful since $8=4+2+1+1=4 \cdot 2 \cdot 1 \cdot 1$ as well as $8=2+2+2+1+1=2 \cdot 2 \cdot 2 \cdot 1 \cdot 1$, so uniqueness is lost.) Find the largest beautiful number less than 100.
30. Let $d(m)$ denote the number of positive integer divisors of a positive integer m. If r is the number of integers $n \leq 2023$ for which $\sum_{i=1}^{n} d(i)$ is odd, find the sum of the digits of r.

SPACE FOR ROUGH WORK

Answers

QNo	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Answer	22	54	23	07	10	16	48	59	17	51	14	18	58	40	03
QNo	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Answer	94	66	71	92	43	15	77	18	31	28	19	91	67	95	18

